Domain, Co-domain and Range of Function
Sets, Relation and Function

117448 The domain of the function \(f(x)=\)

1 \((0,3)\)
2 \((-\infty, 3)\)
3 \((-\infty, \infty)\)
4 \((3, \infty)\)
5 \((-3,3)\)
Sets, Relation and Function

117449 If \(\cos ^{-1} x>\sin ^{-1} x\), then \(x\) lies in the interval

1 \(\left(\frac{1}{2}, 1\right]\)
2 \((0,1]\)
3 \(\left[-1, \frac{1}{\sqrt{2}}\right)\)
4 \([-1,1]\)
5 \([0,1]\)
Sets, Relation and Function

117450 The range of the function $f(x)=\frac{1}{2-\cos 3 x}$ is

1 $(-2, \infty)$
2 $[-2,3]$
3 $\left(\frac{1}{3}, 2\right)$
4 $\left(\frac{1}{2}, 1\right)$
5 $\left[\frac{1}{3}, 1\right]$
Sets, Relation and Function

117451 The domain of the function $f(x)=\sqrt{7-3 x}+\log _e x$ is

1 $0\lt x\lt \infty$
2 $\frac{7}{3} \leq x\lt \infty$
3 $0\lt \mathrm{x} \leq \frac{7}{3}$
4 $-\infty\lt $ x $\lt 0$
5 $-\infty\lt x \leq \frac{7}{3}$
Sets, Relation and Function

117448 The domain of the function \(f(x)=\)

1 \((0,3)\)
2 \((-\infty, 3)\)
3 \((-\infty, \infty)\)
4 \((3, \infty)\)
5 \((-3,3)\)
Sets, Relation and Function

117449 If \(\cos ^{-1} x>\sin ^{-1} x\), then \(x\) lies in the interval

1 \(\left(\frac{1}{2}, 1\right]\)
2 \((0,1]\)
3 \(\left[-1, \frac{1}{\sqrt{2}}\right)\)
4 \([-1,1]\)
5 \([0,1]\)
Sets, Relation and Function

117450 The range of the function $f(x)=\frac{1}{2-\cos 3 x}$ is

1 $(-2, \infty)$
2 $[-2,3]$
3 $\left(\frac{1}{3}, 2\right)$
4 $\left(\frac{1}{2}, 1\right)$
5 $\left[\frac{1}{3}, 1\right]$
Sets, Relation and Function

117451 The domain of the function $f(x)=\sqrt{7-3 x}+\log _e x$ is

1 $0\lt x\lt \infty$
2 $\frac{7}{3} \leq x\lt \infty$
3 $0\lt \mathrm{x} \leq \frac{7}{3}$
4 $-\infty\lt $ x $\lt 0$
5 $-\infty\lt x \leq \frac{7}{3}$
Sets, Relation and Function

117448 The domain of the function \(f(x)=\)

1 \((0,3)\)
2 \((-\infty, 3)\)
3 \((-\infty, \infty)\)
4 \((3, \infty)\)
5 \((-3,3)\)
Sets, Relation and Function

117449 If \(\cos ^{-1} x>\sin ^{-1} x\), then \(x\) lies in the interval

1 \(\left(\frac{1}{2}, 1\right]\)
2 \((0,1]\)
3 \(\left[-1, \frac{1}{\sqrt{2}}\right)\)
4 \([-1,1]\)
5 \([0,1]\)
Sets, Relation and Function

117450 The range of the function $f(x)=\frac{1}{2-\cos 3 x}$ is

1 $(-2, \infty)$
2 $[-2,3]$
3 $\left(\frac{1}{3}, 2\right)$
4 $\left(\frac{1}{2}, 1\right)$
5 $\left[\frac{1}{3}, 1\right]$
Sets, Relation and Function

117451 The domain of the function $f(x)=\sqrt{7-3 x}+\log _e x$ is

1 $0\lt x\lt \infty$
2 $\frac{7}{3} \leq x\lt \infty$
3 $0\lt \mathrm{x} \leq \frac{7}{3}$
4 $-\infty\lt $ x $\lt 0$
5 $-\infty\lt x \leq \frac{7}{3}$
Sets, Relation and Function

117448 The domain of the function \(f(x)=\)

1 \((0,3)\)
2 \((-\infty, 3)\)
3 \((-\infty, \infty)\)
4 \((3, \infty)\)
5 \((-3,3)\)
Sets, Relation and Function

117449 If \(\cos ^{-1} x>\sin ^{-1} x\), then \(x\) lies in the interval

1 \(\left(\frac{1}{2}, 1\right]\)
2 \((0,1]\)
3 \(\left[-1, \frac{1}{\sqrt{2}}\right)\)
4 \([-1,1]\)
5 \([0,1]\)
Sets, Relation and Function

117450 The range of the function $f(x)=\frac{1}{2-\cos 3 x}$ is

1 $(-2, \infty)$
2 $[-2,3]$
3 $\left(\frac{1}{3}, 2\right)$
4 $\left(\frac{1}{2}, 1\right)$
5 $\left[\frac{1}{3}, 1\right]$
Sets, Relation and Function

117451 The domain of the function $f(x)=\sqrt{7-3 x}+\log _e x$ is

1 $0\lt x\lt \infty$
2 $\frac{7}{3} \leq x\lt \infty$
3 $0\lt \mathrm{x} \leq \frac{7}{3}$
4 $-\infty\lt $ x $\lt 0$
5 $-\infty\lt x \leq \frac{7}{3}$