Domain, Co-domain and Range of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117428 The domain of the function \(f(x)=\frac{1}{\log _{10}(1-x)}\) is

1 \((-\infty, 1]-\{0\}\)
2 \((-\infty, 1)-\{0\}\)
3 \((-\infty, 2)\)
4 \((0, \infty)\)
Sets, Relation and Function

117429 For any real number \(y\) the greatest integer not exceeding \(y\) is denoted by [y]. If \(f: F \rightarrow R\) is denoted by \(f(x)=[2 x]-2[x]\) for \(x \in R\), then the range of \(f\) is:

1 \(\{x \in R: x>0\}\)
2 \(\{\mathrm{x} \in \mathrm{R}: \mathrm{x} \leq 0\}\)
3 \(\{x \in R: 0 \leq x \leq 1\}\)
4 \(\{0,1\}\)
Sets, Relation and Function

117432 The period of the function \(f(x)=\sin ^4 x+\cos ^4 x\) is

1 \(\pi\)
2 \(\frac{\pi}{2}\)
3 \(2 \pi\)
4 None of these
Sets, Relation and Function

117433 Domain of definition of the function
\(f(x)=\frac{3}{4-x^2}+\log _{10}\left(x^3-x\right)\), is

1 \((1,2)\)
2 \((-1,0) \cup(1,2)\)
3 \((1,2) \cup(2, \infty)\)
4 \((-1,0) \cup(1,2) \cup(2, \infty)\)
Sets, Relation and Function

117428 The domain of the function \(f(x)=\frac{1}{\log _{10}(1-x)}\) is

1 \((-\infty, 1]-\{0\}\)
2 \((-\infty, 1)-\{0\}\)
3 \((-\infty, 2)\)
4 \((0, \infty)\)
Sets, Relation and Function

117429 For any real number \(y\) the greatest integer not exceeding \(y\) is denoted by [y]. If \(f: F \rightarrow R\) is denoted by \(f(x)=[2 x]-2[x]\) for \(x \in R\), then the range of \(f\) is:

1 \(\{x \in R: x>0\}\)
2 \(\{\mathrm{x} \in \mathrm{R}: \mathrm{x} \leq 0\}\)
3 \(\{x \in R: 0 \leq x \leq 1\}\)
4 \(\{0,1\}\)
Sets, Relation and Function

117432 The period of the function \(f(x)=\sin ^4 x+\cos ^4 x\) is

1 \(\pi\)
2 \(\frac{\pi}{2}\)
3 \(2 \pi\)
4 None of these
Sets, Relation and Function

117433 Domain of definition of the function
\(f(x)=\frac{3}{4-x^2}+\log _{10}\left(x^3-x\right)\), is

1 \((1,2)\)
2 \((-1,0) \cup(1,2)\)
3 \((1,2) \cup(2, \infty)\)
4 \((-1,0) \cup(1,2) \cup(2, \infty)\)
Sets, Relation and Function

117428 The domain of the function \(f(x)=\frac{1}{\log _{10}(1-x)}\) is

1 \((-\infty, 1]-\{0\}\)
2 \((-\infty, 1)-\{0\}\)
3 \((-\infty, 2)\)
4 \((0, \infty)\)
Sets, Relation and Function

117429 For any real number \(y\) the greatest integer not exceeding \(y\) is denoted by [y]. If \(f: F \rightarrow R\) is denoted by \(f(x)=[2 x]-2[x]\) for \(x \in R\), then the range of \(f\) is:

1 \(\{x \in R: x>0\}\)
2 \(\{\mathrm{x} \in \mathrm{R}: \mathrm{x} \leq 0\}\)
3 \(\{x \in R: 0 \leq x \leq 1\}\)
4 \(\{0,1\}\)
Sets, Relation and Function

117432 The period of the function \(f(x)=\sin ^4 x+\cos ^4 x\) is

1 \(\pi\)
2 \(\frac{\pi}{2}\)
3 \(2 \pi\)
4 None of these
Sets, Relation and Function

117433 Domain of definition of the function
\(f(x)=\frac{3}{4-x^2}+\log _{10}\left(x^3-x\right)\), is

1 \((1,2)\)
2 \((-1,0) \cup(1,2)\)
3 \((1,2) \cup(2, \infty)\)
4 \((-1,0) \cup(1,2) \cup(2, \infty)\)
Sets, Relation and Function

117428 The domain of the function \(f(x)=\frac{1}{\log _{10}(1-x)}\) is

1 \((-\infty, 1]-\{0\}\)
2 \((-\infty, 1)-\{0\}\)
3 \((-\infty, 2)\)
4 \((0, \infty)\)
Sets, Relation and Function

117429 For any real number \(y\) the greatest integer not exceeding \(y\) is denoted by [y]. If \(f: F \rightarrow R\) is denoted by \(f(x)=[2 x]-2[x]\) for \(x \in R\), then the range of \(f\) is:

1 \(\{x \in R: x>0\}\)
2 \(\{\mathrm{x} \in \mathrm{R}: \mathrm{x} \leq 0\}\)
3 \(\{x \in R: 0 \leq x \leq 1\}\)
4 \(\{0,1\}\)
Sets, Relation and Function

117432 The period of the function \(f(x)=\sin ^4 x+\cos ^4 x\) is

1 \(\pi\)
2 \(\frac{\pi}{2}\)
3 \(2 \pi\)
4 None of these
Sets, Relation and Function

117433 Domain of definition of the function
\(f(x)=\frac{3}{4-x^2}+\log _{10}\left(x^3-x\right)\), is

1 \((1,2)\)
2 \((-1,0) \cup(1,2)\)
3 \((1,2) \cup(2, \infty)\)
4 \((-1,0) \cup(1,2) \cup(2, \infty)\)