117425
Let the sets \(A\) and \(B\) denote the domain and range respectively of the function
\(f(x)=\frac{1}{\sqrt{[x]-x}}\) where \([x]\) denotes the smallest integer greater than or equal to \(x\). Then among the statements
\(\left(S_1\right): A \cap B=(1, \infty)-N\) and
\(\left(S_2\right): A \cup B=(1, \infty)\)
117425
Let the sets \(A\) and \(B\) denote the domain and range respectively of the function
\(f(x)=\frac{1}{\sqrt{[x]-x}}\) where \([x]\) denotes the smallest integer greater than or equal to \(x\). Then among the statements
\(\left(S_1\right): A \cap B=(1, \infty)-N\) and
\(\left(S_2\right): A \cup B=(1, \infty)\)
117425
Let the sets \(A\) and \(B\) denote the domain and range respectively of the function
\(f(x)=\frac{1}{\sqrt{[x]-x}}\) where \([x]\) denotes the smallest integer greater than or equal to \(x\). Then among the statements
\(\left(S_1\right): A \cap B=(1, \infty)-N\) and
\(\left(S_2\right): A \cup B=(1, \infty)\)
117425
Let the sets \(A\) and \(B\) denote the domain and range respectively of the function
\(f(x)=\frac{1}{\sqrt{[x]-x}}\) where \([x]\) denotes the smallest integer greater than or equal to \(x\). Then among the statements
\(\left(S_1\right): A \cap B=(1, \infty)-N\) and
\(\left(S_2\right): A \cup B=(1, \infty)\)
117425
Let the sets \(A\) and \(B\) denote the domain and range respectively of the function
\(f(x)=\frac{1}{\sqrt{[x]-x}}\) where \([x]\) denotes the smallest integer greater than or equal to \(x\). Then among the statements
\(\left(S_1\right): A \cap B=(1, \infty)-N\) and
\(\left(S_2\right): A \cup B=(1, \infty)\)