Domain, Co-domain and Range of Function
Sets, Relation and Function

117415 Let \(f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1\lt x\lt 1\) and \(g(x)=\sqrt{3+4 x-4 x^2}\), then the domain \((f+g)\) (x)

1 \(\left[\frac{1}{2}, 1\right)\)
2 \(\left[\frac{-1}{2}, \frac{1}{2}\right)\)
3 \(\left[-\frac{1}{2}, 1\right)\)
4 \(\left[-\frac{1}{2},-1\right]\)
Sets, Relation and Function

117416 Let \(a>1\) be a constant. If \(f: A \rightarrow A\) and (x, \()\) ef satisfy \(\mathbf{a}^{\mathbf{x}}+\mathbf{a}^{\mathbf{y}}=\mathbf{a}\), then \(A=\)

1 \((0, a]\)
2 \([0, a]\)
3 \((-\infty, 1)\)
4 \((-\infty, a+1)\)
Sets, Relation and Function

117417 Let \([x]\) denote the greatest integer not more than \(x\). If \(A\) and \(B\) are the domains of the functions \(f(x)=\frac{x-[x]}{\sqrt{|x|-x}}\) and \(g(x)=\frac{x-[x]}{\sqrt{|x|+x}}\) respectively, then

1 \(\mathrm{A} \cup \mathrm{B}=\mathrm{R}\)
2 \(\mathrm{A} \cap \mathrm{B}=\phi\)
3 \(\mathrm{A}-\mathrm{B}=(-\infty, 0)\)
4 \(\mathrm{B}-\mathrm{A}=(0, \infty)\)
Sets, Relation and Function

117418 Domain of \(\cos ^{-1}\left[\log _5\left(x^2+7 x+15\right)\right]\) is

1 The set of all real numbers
2 \([-\infty,-5] \cup[-2, \infty)\)
3 \(\mathrm{R}-\{-5,-2\}\), where \(\mathrm{R}\) is the set of real numbers
4 \([-5,-2]\)
Sets, Relation and Function

117415 Let \(f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1\lt x\lt 1\) and \(g(x)=\sqrt{3+4 x-4 x^2}\), then the domain \((f+g)\) (x)

1 \(\left[\frac{1}{2}, 1\right)\)
2 \(\left[\frac{-1}{2}, \frac{1}{2}\right)\)
3 \(\left[-\frac{1}{2}, 1\right)\)
4 \(\left[-\frac{1}{2},-1\right]\)
Sets, Relation and Function

117416 Let \(a>1\) be a constant. If \(f: A \rightarrow A\) and (x, \()\) ef satisfy \(\mathbf{a}^{\mathbf{x}}+\mathbf{a}^{\mathbf{y}}=\mathbf{a}\), then \(A=\)

1 \((0, a]\)
2 \([0, a]\)
3 \((-\infty, 1)\)
4 \((-\infty, a+1)\)
Sets, Relation and Function

117417 Let \([x]\) denote the greatest integer not more than \(x\). If \(A\) and \(B\) are the domains of the functions \(f(x)=\frac{x-[x]}{\sqrt{|x|-x}}\) and \(g(x)=\frac{x-[x]}{\sqrt{|x|+x}}\) respectively, then

1 \(\mathrm{A} \cup \mathrm{B}=\mathrm{R}\)
2 \(\mathrm{A} \cap \mathrm{B}=\phi\)
3 \(\mathrm{A}-\mathrm{B}=(-\infty, 0)\)
4 \(\mathrm{B}-\mathrm{A}=(0, \infty)\)
Sets, Relation and Function

117418 Domain of \(\cos ^{-1}\left[\log _5\left(x^2+7 x+15\right)\right]\) is

1 The set of all real numbers
2 \([-\infty,-5] \cup[-2, \infty)\)
3 \(\mathrm{R}-\{-5,-2\}\), where \(\mathrm{R}\) is the set of real numbers
4 \([-5,-2]\)
Sets, Relation and Function

117415 Let \(f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1\lt x\lt 1\) and \(g(x)=\sqrt{3+4 x-4 x^2}\), then the domain \((f+g)\) (x)

1 \(\left[\frac{1}{2}, 1\right)\)
2 \(\left[\frac{-1}{2}, \frac{1}{2}\right)\)
3 \(\left[-\frac{1}{2}, 1\right)\)
4 \(\left[-\frac{1}{2},-1\right]\)
Sets, Relation and Function

117416 Let \(a>1\) be a constant. If \(f: A \rightarrow A\) and (x, \()\) ef satisfy \(\mathbf{a}^{\mathbf{x}}+\mathbf{a}^{\mathbf{y}}=\mathbf{a}\), then \(A=\)

1 \((0, a]\)
2 \([0, a]\)
3 \((-\infty, 1)\)
4 \((-\infty, a+1)\)
Sets, Relation and Function

117417 Let \([x]\) denote the greatest integer not more than \(x\). If \(A\) and \(B\) are the domains of the functions \(f(x)=\frac{x-[x]}{\sqrt{|x|-x}}\) and \(g(x)=\frac{x-[x]}{\sqrt{|x|+x}}\) respectively, then

1 \(\mathrm{A} \cup \mathrm{B}=\mathrm{R}\)
2 \(\mathrm{A} \cap \mathrm{B}=\phi\)
3 \(\mathrm{A}-\mathrm{B}=(-\infty, 0)\)
4 \(\mathrm{B}-\mathrm{A}=(0, \infty)\)
Sets, Relation and Function

117418 Domain of \(\cos ^{-1}\left[\log _5\left(x^2+7 x+15\right)\right]\) is

1 The set of all real numbers
2 \([-\infty,-5] \cup[-2, \infty)\)
3 \(\mathrm{R}-\{-5,-2\}\), where \(\mathrm{R}\) is the set of real numbers
4 \([-5,-2]\)
Sets, Relation and Function

117415 Let \(f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1\lt x\lt 1\) and \(g(x)=\sqrt{3+4 x-4 x^2}\), then the domain \((f+g)\) (x)

1 \(\left[\frac{1}{2}, 1\right)\)
2 \(\left[\frac{-1}{2}, \frac{1}{2}\right)\)
3 \(\left[-\frac{1}{2}, 1\right)\)
4 \(\left[-\frac{1}{2},-1\right]\)
Sets, Relation and Function

117416 Let \(a>1\) be a constant. If \(f: A \rightarrow A\) and (x, \()\) ef satisfy \(\mathbf{a}^{\mathbf{x}}+\mathbf{a}^{\mathbf{y}}=\mathbf{a}\), then \(A=\)

1 \((0, a]\)
2 \([0, a]\)
3 \((-\infty, 1)\)
4 \((-\infty, a+1)\)
Sets, Relation and Function

117417 Let \([x]\) denote the greatest integer not more than \(x\). If \(A\) and \(B\) are the domains of the functions \(f(x)=\frac{x-[x]}{\sqrt{|x|-x}}\) and \(g(x)=\frac{x-[x]}{\sqrt{|x|+x}}\) respectively, then

1 \(\mathrm{A} \cup \mathrm{B}=\mathrm{R}\)
2 \(\mathrm{A} \cap \mathrm{B}=\phi\)
3 \(\mathrm{A}-\mathrm{B}=(-\infty, 0)\)
4 \(\mathrm{B}-\mathrm{A}=(0, \infty)\)
Sets, Relation and Function

117418 Domain of \(\cos ^{-1}\left[\log _5\left(x^2+7 x+15\right)\right]\) is

1 The set of all real numbers
2 \([-\infty,-5] \cup[-2, \infty)\)
3 \(\mathrm{R}-\{-5,-2\}\), where \(\mathrm{R}\) is the set of real numbers
4 \([-5,-2]\)