Domain, Co-domain and Range of Function
Sets, Relation and Function

117409 If \(a^2+b^2+c^2=1, a, b, c \in R\), then the set of extreme values of \(a b+b c+c a\) is

1 \(\left\{\frac{1}{2}, 2\right\}\)
2 \(\{-1,2\}\)
3 \(\left\{-1, \frac{1}{2}\right\}\)
4 \(\left\{\frac{-1}{2}, 1\right\}\)
Sets, Relation and Function

117410 The range of the real valued function \(f(x)=\) \(\frac{\mathbf{x}^2+\mathbf{x}+1}{\mathrm{x}}\) is

1 \((-\infty, 1) \cup(1, \infty)\)
2 \((-\infty,-1] \cup[1, \infty)\)
3 \((-\infty,-2] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Sets, Relation and Function

117411 Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |

1 A - V, B- IV,C- I,D- II
2 A - III B- IV,C- I,D- I
3 A - V B- II,C- III,D- IV
4 A - III B- II,C- I,D- IV
Sets, Relation and Function

117413 The domain of the function \(f(x)=\frac{1}{\sqrt{[x]^2-[x]-2}}\) is (Here \([x]\) denotes the greatest integer not exceeding the value of \([x]\)

1 \((-\infty,-2) \cup(1, \infty)\)
2 \((-\infty,-2) \cup(0, \infty)\)
3 \((-\infty,-2) \cup(2, \infty)\)
4 \((-\infty,-1) \cup(3, \infty)\)
Sets, Relation and Function

117414 If \((x)\) denotes the greatest integer function, then the domain of the function \(f(x)=\) \(\sqrt{\frac{x-[x]}{\log \left(x^2-x\right)}}\), is

1 \((1, \infty)\)
2 \((1, \infty)-Z\)
3 \(\mathrm{R}-\left[\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right]\)
4 \(\left[\frac{1-\sqrt{5}}{2}, \frac{\sqrt{5}+1}{2}\right]\)
Sets, Relation and Function

117409 If \(a^2+b^2+c^2=1, a, b, c \in R\), then the set of extreme values of \(a b+b c+c a\) is

1 \(\left\{\frac{1}{2}, 2\right\}\)
2 \(\{-1,2\}\)
3 \(\left\{-1, \frac{1}{2}\right\}\)
4 \(\left\{\frac{-1}{2}, 1\right\}\)
Sets, Relation and Function

117410 The range of the real valued function \(f(x)=\) \(\frac{\mathbf{x}^2+\mathbf{x}+1}{\mathrm{x}}\) is

1 \((-\infty, 1) \cup(1, \infty)\)
2 \((-\infty,-1] \cup[1, \infty)\)
3 \((-\infty,-2] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Sets, Relation and Function

117411 Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |

1 A - V, B- IV,C- I,D- II
2 A - III B- IV,C- I,D- I
3 A - V B- II,C- III,D- IV
4 A - III B- II,C- I,D- IV
Sets, Relation and Function

117413 The domain of the function \(f(x)=\frac{1}{\sqrt{[x]^2-[x]-2}}\) is (Here \([x]\) denotes the greatest integer not exceeding the value of \([x]\)

1 \((-\infty,-2) \cup(1, \infty)\)
2 \((-\infty,-2) \cup(0, \infty)\)
3 \((-\infty,-2) \cup(2, \infty)\)
4 \((-\infty,-1) \cup(3, \infty)\)
Sets, Relation and Function

117414 If \((x)\) denotes the greatest integer function, then the domain of the function \(f(x)=\) \(\sqrt{\frac{x-[x]}{\log \left(x^2-x\right)}}\), is

1 \((1, \infty)\)
2 \((1, \infty)-Z\)
3 \(\mathrm{R}-\left[\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right]\)
4 \(\left[\frac{1-\sqrt{5}}{2}, \frac{\sqrt{5}+1}{2}\right]\)
Sets, Relation and Function

117409 If \(a^2+b^2+c^2=1, a, b, c \in R\), then the set of extreme values of \(a b+b c+c a\) is

1 \(\left\{\frac{1}{2}, 2\right\}\)
2 \(\{-1,2\}\)
3 \(\left\{-1, \frac{1}{2}\right\}\)
4 \(\left\{\frac{-1}{2}, 1\right\}\)
Sets, Relation and Function

117410 The range of the real valued function \(f(x)=\) \(\frac{\mathbf{x}^2+\mathbf{x}+1}{\mathrm{x}}\) is

1 \((-\infty, 1) \cup(1, \infty)\)
2 \((-\infty,-1] \cup[1, \infty)\)
3 \((-\infty,-2] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Sets, Relation and Function

117411 Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |

1 A - V, B- IV,C- I,D- II
2 A - III B- IV,C- I,D- I
3 A - V B- II,C- III,D- IV
4 A - III B- II,C- I,D- IV
Sets, Relation and Function

117413 The domain of the function \(f(x)=\frac{1}{\sqrt{[x]^2-[x]-2}}\) is (Here \([x]\) denotes the greatest integer not exceeding the value of \([x]\)

1 \((-\infty,-2) \cup(1, \infty)\)
2 \((-\infty,-2) \cup(0, \infty)\)
3 \((-\infty,-2) \cup(2, \infty)\)
4 \((-\infty,-1) \cup(3, \infty)\)
Sets, Relation and Function

117414 If \((x)\) denotes the greatest integer function, then the domain of the function \(f(x)=\) \(\sqrt{\frac{x-[x]}{\log \left(x^2-x\right)}}\), is

1 \((1, \infty)\)
2 \((1, \infty)-Z\)
3 \(\mathrm{R}-\left[\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right]\)
4 \(\left[\frac{1-\sqrt{5}}{2}, \frac{\sqrt{5}+1}{2}\right]\)
Sets, Relation and Function

117409 If \(a^2+b^2+c^2=1, a, b, c \in R\), then the set of extreme values of \(a b+b c+c a\) is

1 \(\left\{\frac{1}{2}, 2\right\}\)
2 \(\{-1,2\}\)
3 \(\left\{-1, \frac{1}{2}\right\}\)
4 \(\left\{\frac{-1}{2}, 1\right\}\)
Sets, Relation and Function

117410 The range of the real valued function \(f(x)=\) \(\frac{\mathbf{x}^2+\mathbf{x}+1}{\mathrm{x}}\) is

1 \((-\infty, 1) \cup(1, \infty)\)
2 \((-\infty,-1] \cup[1, \infty)\)
3 \((-\infty,-2] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Sets, Relation and Function

117411 Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |

1 A - V, B- IV,C- I,D- II
2 A - III B- IV,C- I,D- I
3 A - V B- II,C- III,D- IV
4 A - III B- II,C- I,D- IV
Sets, Relation and Function

117413 The domain of the function \(f(x)=\frac{1}{\sqrt{[x]^2-[x]-2}}\) is (Here \([x]\) denotes the greatest integer not exceeding the value of \([x]\)

1 \((-\infty,-2) \cup(1, \infty)\)
2 \((-\infty,-2) \cup(0, \infty)\)
3 \((-\infty,-2) \cup(2, \infty)\)
4 \((-\infty,-1) \cup(3, \infty)\)
Sets, Relation and Function

117414 If \((x)\) denotes the greatest integer function, then the domain of the function \(f(x)=\) \(\sqrt{\frac{x-[x]}{\log \left(x^2-x\right)}}\), is

1 \((1, \infty)\)
2 \((1, \infty)-Z\)
3 \(\mathrm{R}-\left[\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right]\)
4 \(\left[\frac{1-\sqrt{5}}{2}, \frac{\sqrt{5}+1}{2}\right]\)
Sets, Relation and Function

117409 If \(a^2+b^2+c^2=1, a, b, c \in R\), then the set of extreme values of \(a b+b c+c a\) is

1 \(\left\{\frac{1}{2}, 2\right\}\)
2 \(\{-1,2\}\)
3 \(\left\{-1, \frac{1}{2}\right\}\)
4 \(\left\{\frac{-1}{2}, 1\right\}\)
Sets, Relation and Function

117410 The range of the real valued function \(f(x)=\) \(\frac{\mathbf{x}^2+\mathbf{x}+1}{\mathrm{x}}\) is

1 \((-\infty, 1) \cup(1, \infty)\)
2 \((-\infty,-1] \cup[1, \infty)\)
3 \((-\infty,-2] \cup[3, \infty)\)
4 \((-\infty,-1] \cup[3, \infty)\)
Sets, Relation and Function

117411 Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |

1 A - V, B- IV,C- I,D- II
2 A - III B- IV,C- I,D- I
3 A - V B- II,C- III,D- IV
4 A - III B- II,C- I,D- IV
Sets, Relation and Function

117413 The domain of the function \(f(x)=\frac{1}{\sqrt{[x]^2-[x]-2}}\) is (Here \([x]\) denotes the greatest integer not exceeding the value of \([x]\)

1 \((-\infty,-2) \cup(1, \infty)\)
2 \((-\infty,-2) \cup(0, \infty)\)
3 \((-\infty,-2) \cup(2, \infty)\)
4 \((-\infty,-1) \cup(3, \infty)\)
Sets, Relation and Function

117414 If \((x)\) denotes the greatest integer function, then the domain of the function \(f(x)=\) \(\sqrt{\frac{x-[x]}{\log \left(x^2-x\right)}}\), is

1 \((1, \infty)\)
2 \((1, \infty)-Z\)
3 \(\mathrm{R}-\left[\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right]\)
4 \(\left[\frac{1-\sqrt{5}}{2}, \frac{\sqrt{5}+1}{2}\right]\)