117411
Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |
117411
Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |
117411
Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |
117411
Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |
117411
Match the items of List-I with those of the items of List-II
| List-I | List-II |
| :--- | :--- |
| A. Range of $\sec ^{-1}\left[1+\cos ^2 x\right],[\cdot]$ denote greatest integer function | I. odd function |
| B. Domain of $f(x)$, where $f\left(x+\frac{1}{x}\right)=$ $x^2+\frac{1}{x^2}$ | II. $\left\{0, \frac{1}{2}\right\}$ |
| C. $\mathbf{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+$ $\mathrm{f}(\mathrm{y}) ; \mathrm{f}(\mathbf{1})=5$ | III. $\left\{\sec ^{-1} 5, \sec ^{-1} 4\right\}$ |
| D. $\sin ^{-1} x-\cos ^{-1} x+\sin ^{-}$ $1(1-x)=0 \Rightarrow x \in$ | IV.R |