Domain, Co-domain and Range of Function
Sets, Relation and Function

117393 Find the domain of the function
\(f(x)=\frac{\left(x^2+1\right)}{\left(x^2-3 x+3\right)}\)

1 \(\mathrm{R}-\{1,2\}\)
2 \(\mathrm{R}-\{1,4\}\)
3 \(\mathrm{R}\)
4 \(\mathrm{R}-\{1\}\)
Sets, Relation and Function

117394 Find the range of the function
\(f:[0,1] \rightarrow R, f(x)=x^3-x^2+4 x+2 \sin ^{-1} x .\)

1 \([-(\pi+2), 0]\)
2 \([0,4+\pi]\)
3 \([2,3]\)
4 \((0,2+\pi)\)
Sets, Relation and Function

117395 Range of the function \(f(x)=\frac{x^2+x+2}{x^2+x+1}, x \in R\) is

1 \((1, \infty)\)
2 \(\left(1, \frac{11}{7}\right)\)
3 \(\left(1, \frac{7}{3}\right)\)
4 \(\left(1, \frac{7}{5}\right)\)
Sets, Relation and Function

117404 The domain of the function
\(f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}\) is (where \([x]\) denotes the greatest integer less than or equal to \(x\) )

1 \((-\infty,-2) \cup(5, \infty)\)
2 \((-\infty,-3] \cup[6, \infty)\)
3 \((-\infty,-2) \cup[6, \infty)\)
4 \((-\infty,-3] \cup(5, \infty)\)
Sets, Relation and Function

117431 The domain of \(\sin ^{-1}\left[\log _3\left(\frac{x}{3}\right)\right]\) is

1 \([1,9]\)
2 \([-1,9]\)
3 \([-9,1]\)
4 \([-9,-1]\)
Sets, Relation and Function

117393 Find the domain of the function
\(f(x)=\frac{\left(x^2+1\right)}{\left(x^2-3 x+3\right)}\)

1 \(\mathrm{R}-\{1,2\}\)
2 \(\mathrm{R}-\{1,4\}\)
3 \(\mathrm{R}\)
4 \(\mathrm{R}-\{1\}\)
Sets, Relation and Function

117394 Find the range of the function
\(f:[0,1] \rightarrow R, f(x)=x^3-x^2+4 x+2 \sin ^{-1} x .\)

1 \([-(\pi+2), 0]\)
2 \([0,4+\pi]\)
3 \([2,3]\)
4 \((0,2+\pi)\)
Sets, Relation and Function

117395 Range of the function \(f(x)=\frac{x^2+x+2}{x^2+x+1}, x \in R\) is

1 \((1, \infty)\)
2 \(\left(1, \frac{11}{7}\right)\)
3 \(\left(1, \frac{7}{3}\right)\)
4 \(\left(1, \frac{7}{5}\right)\)
Sets, Relation and Function

117404 The domain of the function
\(f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}\) is (where \([x]\) denotes the greatest integer less than or equal to \(x\) )

1 \((-\infty,-2) \cup(5, \infty)\)
2 \((-\infty,-3] \cup[6, \infty)\)
3 \((-\infty,-2) \cup[6, \infty)\)
4 \((-\infty,-3] \cup(5, \infty)\)
Sets, Relation and Function

117431 The domain of \(\sin ^{-1}\left[\log _3\left(\frac{x}{3}\right)\right]\) is

1 \([1,9]\)
2 \([-1,9]\)
3 \([-9,1]\)
4 \([-9,-1]\)
Sets, Relation and Function

117393 Find the domain of the function
\(f(x)=\frac{\left(x^2+1\right)}{\left(x^2-3 x+3\right)}\)

1 \(\mathrm{R}-\{1,2\}\)
2 \(\mathrm{R}-\{1,4\}\)
3 \(\mathrm{R}\)
4 \(\mathrm{R}-\{1\}\)
Sets, Relation and Function

117394 Find the range of the function
\(f:[0,1] \rightarrow R, f(x)=x^3-x^2+4 x+2 \sin ^{-1} x .\)

1 \([-(\pi+2), 0]\)
2 \([0,4+\pi]\)
3 \([2,3]\)
4 \((0,2+\pi)\)
Sets, Relation and Function

117395 Range of the function \(f(x)=\frac{x^2+x+2}{x^2+x+1}, x \in R\) is

1 \((1, \infty)\)
2 \(\left(1, \frac{11}{7}\right)\)
3 \(\left(1, \frac{7}{3}\right)\)
4 \(\left(1, \frac{7}{5}\right)\)
Sets, Relation and Function

117404 The domain of the function
\(f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}\) is (where \([x]\) denotes the greatest integer less than or equal to \(x\) )

1 \((-\infty,-2) \cup(5, \infty)\)
2 \((-\infty,-3] \cup[6, \infty)\)
3 \((-\infty,-2) \cup[6, \infty)\)
4 \((-\infty,-3] \cup(5, \infty)\)
Sets, Relation and Function

117431 The domain of \(\sin ^{-1}\left[\log _3\left(\frac{x}{3}\right)\right]\) is

1 \([1,9]\)
2 \([-1,9]\)
3 \([-9,1]\)
4 \([-9,-1]\)
Sets, Relation and Function

117393 Find the domain of the function
\(f(x)=\frac{\left(x^2+1\right)}{\left(x^2-3 x+3\right)}\)

1 \(\mathrm{R}-\{1,2\}\)
2 \(\mathrm{R}-\{1,4\}\)
3 \(\mathrm{R}\)
4 \(\mathrm{R}-\{1\}\)
Sets, Relation and Function

117394 Find the range of the function
\(f:[0,1] \rightarrow R, f(x)=x^3-x^2+4 x+2 \sin ^{-1} x .\)

1 \([-(\pi+2), 0]\)
2 \([0,4+\pi]\)
3 \([2,3]\)
4 \((0,2+\pi)\)
Sets, Relation and Function

117395 Range of the function \(f(x)=\frac{x^2+x+2}{x^2+x+1}, x \in R\) is

1 \((1, \infty)\)
2 \(\left(1, \frac{11}{7}\right)\)
3 \(\left(1, \frac{7}{3}\right)\)
4 \(\left(1, \frac{7}{5}\right)\)
Sets, Relation and Function

117404 The domain of the function
\(f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}\) is (where \([x]\) denotes the greatest integer less than or equal to \(x\) )

1 \((-\infty,-2) \cup(5, \infty)\)
2 \((-\infty,-3] \cup[6, \infty)\)
3 \((-\infty,-2) \cup[6, \infty)\)
4 \((-\infty,-3] \cup(5, \infty)\)
Sets, Relation and Function

117431 The domain of \(\sin ^{-1}\left[\log _3\left(\frac{x}{3}\right)\right]\) is

1 \([1,9]\)
2 \([-1,9]\)
3 \([-9,1]\)
4 \([-9,-1]\)
Sets, Relation and Function

117393 Find the domain of the function
\(f(x)=\frac{\left(x^2+1\right)}{\left(x^2-3 x+3\right)}\)

1 \(\mathrm{R}-\{1,2\}\)
2 \(\mathrm{R}-\{1,4\}\)
3 \(\mathrm{R}\)
4 \(\mathrm{R}-\{1\}\)
Sets, Relation and Function

117394 Find the range of the function
\(f:[0,1] \rightarrow R, f(x)=x^3-x^2+4 x+2 \sin ^{-1} x .\)

1 \([-(\pi+2), 0]\)
2 \([0,4+\pi]\)
3 \([2,3]\)
4 \((0,2+\pi)\)
Sets, Relation and Function

117395 Range of the function \(f(x)=\frac{x^2+x+2}{x^2+x+1}, x \in R\) is

1 \((1, \infty)\)
2 \(\left(1, \frac{11}{7}\right)\)
3 \(\left(1, \frac{7}{3}\right)\)
4 \(\left(1, \frac{7}{5}\right)\)
Sets, Relation and Function

117404 The domain of the function
\(f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}\) is (where \([x]\) denotes the greatest integer less than or equal to \(x\) )

1 \((-\infty,-2) \cup(5, \infty)\)
2 \((-\infty,-3] \cup[6, \infty)\)
3 \((-\infty,-2) \cup[6, \infty)\)
4 \((-\infty,-3] \cup(5, \infty)\)
Sets, Relation and Function

117431 The domain of \(\sin ^{-1}\left[\log _3\left(\frac{x}{3}\right)\right]\) is

1 \([1,9]\)
2 \([-1,9]\)
3 \([-9,1]\)
4 \([-9,-1]\)