Domain, Co-domain and Range of Function
Sets, Relation and Function

117375 \(f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1\lt x\lt 1\) and \(g(x)=\) \(3+4 x-4 x^2\) Find the domain of \((f+g)\).

1 \(\left(\frac{-1}{2}, 1\right]\)
2 \((-1,1)\)
3 \(\left[\frac{-1}{2}, 1\right)\)
4 \(\left[-\frac{1}{2}, \frac{3}{2}\right]\)
Sets, Relation and Function

117376 The domain of the function \(f(x)=\sqrt{\cos x}\)

1 \(\left[\frac{3 \pi}{2}, 2 \pi\right]\)
2 \(\left[0, \frac{\pi}{2}\right]\)
3 \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)
4 \(\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]\)
Sets, Relation and Function

117377 Let \(f:[2, \infty) \rightarrow R\) be the function defined by \(f(x)=x^2-4 x+5\), then the range of \(f\) is

1 \([1, \infty)\)
2 \((1, \infty)\)
3 \([5, \infty)\)
4 \((-\infty, \infty)\)
Sets, Relation and Function

117378 The domain of the function \(f: R \rightarrow R\) defined by \(f(x)=\sqrt{x^2-7 x+12}\) is

1 \((-\infty, 3] \cup[4, \infty)\)
2 \((-\infty, 3] \cap[4, \infty)\)
3 \((-\infty, 3] \cup(4, \infty)\)
4 \((3,4)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117375 \(f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1\lt x\lt 1\) and \(g(x)=\) \(3+4 x-4 x^2\) Find the domain of \((f+g)\).

1 \(\left(\frac{-1}{2}, 1\right]\)
2 \((-1,1)\)
3 \(\left[\frac{-1}{2}, 1\right)\)
4 \(\left[-\frac{1}{2}, \frac{3}{2}\right]\)
Sets, Relation and Function

117376 The domain of the function \(f(x)=\sqrt{\cos x}\)

1 \(\left[\frac{3 \pi}{2}, 2 \pi\right]\)
2 \(\left[0, \frac{\pi}{2}\right]\)
3 \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)
4 \(\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]\)
Sets, Relation and Function

117377 Let \(f:[2, \infty) \rightarrow R\) be the function defined by \(f(x)=x^2-4 x+5\), then the range of \(f\) is

1 \([1, \infty)\)
2 \((1, \infty)\)
3 \([5, \infty)\)
4 \((-\infty, \infty)\)
Sets, Relation and Function

117378 The domain of the function \(f: R \rightarrow R\) defined by \(f(x)=\sqrt{x^2-7 x+12}\) is

1 \((-\infty, 3] \cup[4, \infty)\)
2 \((-\infty, 3] \cap[4, \infty)\)
3 \((-\infty, 3] \cup(4, \infty)\)
4 \((3,4)\)
Sets, Relation and Function

117375 \(f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1\lt x\lt 1\) and \(g(x)=\) \(3+4 x-4 x^2\) Find the domain of \((f+g)\).

1 \(\left(\frac{-1}{2}, 1\right]\)
2 \((-1,1)\)
3 \(\left[\frac{-1}{2}, 1\right)\)
4 \(\left[-\frac{1}{2}, \frac{3}{2}\right]\)
Sets, Relation and Function

117376 The domain of the function \(f(x)=\sqrt{\cos x}\)

1 \(\left[\frac{3 \pi}{2}, 2 \pi\right]\)
2 \(\left[0, \frac{\pi}{2}\right]\)
3 \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)
4 \(\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]\)
Sets, Relation and Function

117377 Let \(f:[2, \infty) \rightarrow R\) be the function defined by \(f(x)=x^2-4 x+5\), then the range of \(f\) is

1 \([1, \infty)\)
2 \((1, \infty)\)
3 \([5, \infty)\)
4 \((-\infty, \infty)\)
Sets, Relation and Function

117378 The domain of the function \(f: R \rightarrow R\) defined by \(f(x)=\sqrt{x^2-7 x+12}\) is

1 \((-\infty, 3] \cup[4, \infty)\)
2 \((-\infty, 3] \cap[4, \infty)\)
3 \((-\infty, 3] \cup(4, \infty)\)
4 \((3,4)\)
Sets, Relation and Function

117375 \(f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right),-1\lt x\lt 1\) and \(g(x)=\) \(3+4 x-4 x^2\) Find the domain of \((f+g)\).

1 \(\left(\frac{-1}{2}, 1\right]\)
2 \((-1,1)\)
3 \(\left[\frac{-1}{2}, 1\right)\)
4 \(\left[-\frac{1}{2}, \frac{3}{2}\right]\)
Sets, Relation and Function

117376 The domain of the function \(f(x)=\sqrt{\cos x}\)

1 \(\left[\frac{3 \pi}{2}, 2 \pi\right]\)
2 \(\left[0, \frac{\pi}{2}\right]\)
3 \(\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\)
4 \(\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]\)
Sets, Relation and Function

117377 Let \(f:[2, \infty) \rightarrow R\) be the function defined by \(f(x)=x^2-4 x+5\), then the range of \(f\) is

1 \([1, \infty)\)
2 \((1, \infty)\)
3 \([5, \infty)\)
4 \((-\infty, \infty)\)
Sets, Relation and Function

117378 The domain of the function \(f: R \rightarrow R\) defined by \(f(x)=\sqrt{x^2-7 x+12}\) is

1 \((-\infty, 3] \cup[4, \infty)\)
2 \((-\infty, 3] \cap[4, \infty)\)
3 \((-\infty, 3] \cup(4, \infty)\)
4 \((3,4)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here