Domain, Co-domain and Range of Function
Sets, Relation and Function

117371 If \(f(x)=\sqrt{2 x-1}+5 \cos ^{-1}\left(\frac{2 x-1}{3}\right)\) then the domain of the function \(f(x)\) is

1 \(\left[-1, \frac{1}{2}\right]\)
2 \(\left[\frac{1}{2}, 2\right]\)
3 \([-1,2]\)
4 \(\left[\frac{1}{2}, \infty\right]\)
Sets, Relation and Function

117372 For what natural numbers \(n \in N\), the inequality \(2^n>n+1\) is valid ?

1 \(\forall \mathrm{n} \in \mathrm{N}\)
2 \(\forall \mathrm{n} \geq 2\)
3 \(\forall 1 \leq \mathrm{n} \leq 3\)
4 \(\forall \mathrm{n} \in \mathrm{N}-\{2,3\}\)
Sets, Relation and Function

117374 If \(f(x)=x\left(\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}\right), x>1\). Then,

1 \(f(x) \leq 1\)
2 \(1\lt \mathrm{f}(\mathrm{x}) \leq 2\)
3 \(2\lt \mathrm{f}(\mathrm{x}) \leq 3\)
4 \(f(x)>3\)
Sets, Relation and Function

117412 The domain of the function
\(f(x)=\sec ^{-1}(3 x-4)+\tanh ^{-1}\left(\frac{x+3}{5}\right)\) is

1 \((-8,1) \cup\left(\frac{3}{5}, 2\right)\)
2 \(\left(1, \frac{5}{3}\right)\)
3 \([-8,1] \cup\left[\frac{5}{3}, 2\right]\)
4 \((-8,1] \cup\left[\frac{5}{3}, 2\right)\)
Sets, Relation and Function

117371 If \(f(x)=\sqrt{2 x-1}+5 \cos ^{-1}\left(\frac{2 x-1}{3}\right)\) then the domain of the function \(f(x)\) is

1 \(\left[-1, \frac{1}{2}\right]\)
2 \(\left[\frac{1}{2}, 2\right]\)
3 \([-1,2]\)
4 \(\left[\frac{1}{2}, \infty\right]\)
Sets, Relation and Function

117372 For what natural numbers \(n \in N\), the inequality \(2^n>n+1\) is valid ?

1 \(\forall \mathrm{n} \in \mathrm{N}\)
2 \(\forall \mathrm{n} \geq 2\)
3 \(\forall 1 \leq \mathrm{n} \leq 3\)
4 \(\forall \mathrm{n} \in \mathrm{N}-\{2,3\}\)
Sets, Relation and Function

117374 If \(f(x)=x\left(\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}\right), x>1\). Then,

1 \(f(x) \leq 1\)
2 \(1\lt \mathrm{f}(\mathrm{x}) \leq 2\)
3 \(2\lt \mathrm{f}(\mathrm{x}) \leq 3\)
4 \(f(x)>3\)
Sets, Relation and Function

117412 The domain of the function
\(f(x)=\sec ^{-1}(3 x-4)+\tanh ^{-1}\left(\frac{x+3}{5}\right)\) is

1 \((-8,1) \cup\left(\frac{3}{5}, 2\right)\)
2 \(\left(1, \frac{5}{3}\right)\)
3 \([-8,1] \cup\left[\frac{5}{3}, 2\right]\)
4 \((-8,1] \cup\left[\frac{5}{3}, 2\right)\)
Sets, Relation and Function

117371 If \(f(x)=\sqrt{2 x-1}+5 \cos ^{-1}\left(\frac{2 x-1}{3}\right)\) then the domain of the function \(f(x)\) is

1 \(\left[-1, \frac{1}{2}\right]\)
2 \(\left[\frac{1}{2}, 2\right]\)
3 \([-1,2]\)
4 \(\left[\frac{1}{2}, \infty\right]\)
Sets, Relation and Function

117372 For what natural numbers \(n \in N\), the inequality \(2^n>n+1\) is valid ?

1 \(\forall \mathrm{n} \in \mathrm{N}\)
2 \(\forall \mathrm{n} \geq 2\)
3 \(\forall 1 \leq \mathrm{n} \leq 3\)
4 \(\forall \mathrm{n} \in \mathrm{N}-\{2,3\}\)
Sets, Relation and Function

117374 If \(f(x)=x\left(\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}\right), x>1\). Then,

1 \(f(x) \leq 1\)
2 \(1\lt \mathrm{f}(\mathrm{x}) \leq 2\)
3 \(2\lt \mathrm{f}(\mathrm{x}) \leq 3\)
4 \(f(x)>3\)
Sets, Relation and Function

117412 The domain of the function
\(f(x)=\sec ^{-1}(3 x-4)+\tanh ^{-1}\left(\frac{x+3}{5}\right)\) is

1 \((-8,1) \cup\left(\frac{3}{5}, 2\right)\)
2 \(\left(1, \frac{5}{3}\right)\)
3 \([-8,1] \cup\left[\frac{5}{3}, 2\right]\)
4 \((-8,1] \cup\left[\frac{5}{3}, 2\right)\)
Sets, Relation and Function

117371 If \(f(x)=\sqrt{2 x-1}+5 \cos ^{-1}\left(\frac{2 x-1}{3}\right)\) then the domain of the function \(f(x)\) is

1 \(\left[-1, \frac{1}{2}\right]\)
2 \(\left[\frac{1}{2}, 2\right]\)
3 \([-1,2]\)
4 \(\left[\frac{1}{2}, \infty\right]\)
Sets, Relation and Function

117372 For what natural numbers \(n \in N\), the inequality \(2^n>n+1\) is valid ?

1 \(\forall \mathrm{n} \in \mathrm{N}\)
2 \(\forall \mathrm{n} \geq 2\)
3 \(\forall 1 \leq \mathrm{n} \leq 3\)
4 \(\forall \mathrm{n} \in \mathrm{N}-\{2,3\}\)
Sets, Relation and Function

117374 If \(f(x)=x\left(\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}\right), x>1\). Then,

1 \(f(x) \leq 1\)
2 \(1\lt \mathrm{f}(\mathrm{x}) \leq 2\)
3 \(2\lt \mathrm{f}(\mathrm{x}) \leq 3\)
4 \(f(x)>3\)
Sets, Relation and Function

117412 The domain of the function
\(f(x)=\sec ^{-1}(3 x-4)+\tanh ^{-1}\left(\frac{x+3}{5}\right)\) is

1 \((-8,1) \cup\left(\frac{3}{5}, 2\right)\)
2 \(\left(1, \frac{5}{3}\right)\)
3 \([-8,1] \cup\left[\frac{5}{3}, 2\right]\)
4 \((-8,1] \cup\left[\frac{5}{3}, 2\right)\)