Domain, Co-domain and Range of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117366 The range of the function \(f(x)=x^2+\frac{1}{x^2+1}\) is

1 \([1, \infty)\)
2 \((2, \infty)\)
3 \(\left(\frac{3}{2}, \infty\right)\)
4 \((0,1)\)
Sets, Relation and Function

117367 For \(f(x)=\sin \left(\frac{1}{|x| \sqrt{x^2-1}}\right)\) the domain and range of \(\boldsymbol{f}(\mathrm{x})\) in \(\mathrm{R}\) are

1 \(\mathrm{R}-(0, \pm 1)\) and \([-1,1]\), respectively
2 \(\mathrm{R}-(-1,1)\) and \([-1,1]\) respectively
3 \(\mathrm{R}-(0, \pm 1)\) and \([0,1]\), respectively
4 \(\mathrm{R}-[-1,1]\) and \([0,1]\), respectively
Sets, Relation and Function

117369 \(\left\{x \in R: \frac{\sqrt{6+x-x^2}}{2 x+5} \geq \frac{\sqrt{6+x-x^2}}{x+4}\right\}=\)

1 \([-2,3]\)
2 \((-\infty,-4] \cup\left[\frac{-5}{2},-1\right]\)
3 \([-2,-1] \cup\{3\}\)
4 \((-\infty,-4] \cup[-2,-1]\)
Sets, Relation and Function

117370 Let \(D=\left\{x \in R: f(x)=\sqrt{\frac{x-|x|}{x-[x]}}\right\}\) is defined and \(C\) be the range of the real function \(g(x)=\frac{2 x}{4+x^2}\). Then \(D \cap C=\)

1 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
2 \(\left(0, \frac{1}{2}\right]\)
3 \(\mathrm{R}^{+}\)
4 \(\mathrm{R}^{+}-\mathrm{Z}^{+}\)
Sets, Relation and Function

117366 The range of the function \(f(x)=x^2+\frac{1}{x^2+1}\) is

1 \([1, \infty)\)
2 \((2, \infty)\)
3 \(\left(\frac{3}{2}, \infty\right)\)
4 \((0,1)\)
Sets, Relation and Function

117367 For \(f(x)=\sin \left(\frac{1}{|x| \sqrt{x^2-1}}\right)\) the domain and range of \(\boldsymbol{f}(\mathrm{x})\) in \(\mathrm{R}\) are

1 \(\mathrm{R}-(0, \pm 1)\) and \([-1,1]\), respectively
2 \(\mathrm{R}-(-1,1)\) and \([-1,1]\) respectively
3 \(\mathrm{R}-(0, \pm 1)\) and \([0,1]\), respectively
4 \(\mathrm{R}-[-1,1]\) and \([0,1]\), respectively
Sets, Relation and Function

117369 \(\left\{x \in R: \frac{\sqrt{6+x-x^2}}{2 x+5} \geq \frac{\sqrt{6+x-x^2}}{x+4}\right\}=\)

1 \([-2,3]\)
2 \((-\infty,-4] \cup\left[\frac{-5}{2},-1\right]\)
3 \([-2,-1] \cup\{3\}\)
4 \((-\infty,-4] \cup[-2,-1]\)
Sets, Relation and Function

117370 Let \(D=\left\{x \in R: f(x)=\sqrt{\frac{x-|x|}{x-[x]}}\right\}\) is defined and \(C\) be the range of the real function \(g(x)=\frac{2 x}{4+x^2}\). Then \(D \cap C=\)

1 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
2 \(\left(0, \frac{1}{2}\right]\)
3 \(\mathrm{R}^{+}\)
4 \(\mathrm{R}^{+}-\mathrm{Z}^{+}\)
Sets, Relation and Function

117366 The range of the function \(f(x)=x^2+\frac{1}{x^2+1}\) is

1 \([1, \infty)\)
2 \((2, \infty)\)
3 \(\left(\frac{3}{2}, \infty\right)\)
4 \((0,1)\)
Sets, Relation and Function

117367 For \(f(x)=\sin \left(\frac{1}{|x| \sqrt{x^2-1}}\right)\) the domain and range of \(\boldsymbol{f}(\mathrm{x})\) in \(\mathrm{R}\) are

1 \(\mathrm{R}-(0, \pm 1)\) and \([-1,1]\), respectively
2 \(\mathrm{R}-(-1,1)\) and \([-1,1]\) respectively
3 \(\mathrm{R}-(0, \pm 1)\) and \([0,1]\), respectively
4 \(\mathrm{R}-[-1,1]\) and \([0,1]\), respectively
Sets, Relation and Function

117369 \(\left\{x \in R: \frac{\sqrt{6+x-x^2}}{2 x+5} \geq \frac{\sqrt{6+x-x^2}}{x+4}\right\}=\)

1 \([-2,3]\)
2 \((-\infty,-4] \cup\left[\frac{-5}{2},-1\right]\)
3 \([-2,-1] \cup\{3\}\)
4 \((-\infty,-4] \cup[-2,-1]\)
Sets, Relation and Function

117370 Let \(D=\left\{x \in R: f(x)=\sqrt{\frac{x-|x|}{x-[x]}}\right\}\) is defined and \(C\) be the range of the real function \(g(x)=\frac{2 x}{4+x^2}\). Then \(D \cap C=\)

1 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
2 \(\left(0, \frac{1}{2}\right]\)
3 \(\mathrm{R}^{+}\)
4 \(\mathrm{R}^{+}-\mathrm{Z}^{+}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117366 The range of the function \(f(x)=x^2+\frac{1}{x^2+1}\) is

1 \([1, \infty)\)
2 \((2, \infty)\)
3 \(\left(\frac{3}{2}, \infty\right)\)
4 \((0,1)\)
Sets, Relation and Function

117367 For \(f(x)=\sin \left(\frac{1}{|x| \sqrt{x^2-1}}\right)\) the domain and range of \(\boldsymbol{f}(\mathrm{x})\) in \(\mathrm{R}\) are

1 \(\mathrm{R}-(0, \pm 1)\) and \([-1,1]\), respectively
2 \(\mathrm{R}-(-1,1)\) and \([-1,1]\) respectively
3 \(\mathrm{R}-(0, \pm 1)\) and \([0,1]\), respectively
4 \(\mathrm{R}-[-1,1]\) and \([0,1]\), respectively
Sets, Relation and Function

117369 \(\left\{x \in R: \frac{\sqrt{6+x-x^2}}{2 x+5} \geq \frac{\sqrt{6+x-x^2}}{x+4}\right\}=\)

1 \([-2,3]\)
2 \((-\infty,-4] \cup\left[\frac{-5}{2},-1\right]\)
3 \([-2,-1] \cup\{3\}\)
4 \((-\infty,-4] \cup[-2,-1]\)
Sets, Relation and Function

117370 Let \(D=\left\{x \in R: f(x)=\sqrt{\frac{x-|x|}{x-[x]}}\right\}\) is defined and \(C\) be the range of the real function \(g(x)=\frac{2 x}{4+x^2}\). Then \(D \cap C=\)

1 \(\left[-\frac{1}{2}, \frac{1}{2}\right]\)
2 \(\left(0, \frac{1}{2}\right]\)
3 \(\mathrm{R}^{+}\)
4 \(\mathrm{R}^{+}-\mathrm{Z}^{+}\)