Domain, Co-domain and Range of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117357 The range of the function \(y=3\) sin \(\left(\sqrt{\frac{\pi^2}{16}-x^2}\right)\) is

1 \([0, \sqrt{3 / 2}]\)
2 \([0,1]\)
3 \([0,3 / \sqrt{2}]\)
4 \([0, \infty]\)
Sets, Relation and Function

117358 For the function \(f(x)=\left[\frac{1}{[x]}\right]\), where \([x]\) denotes the greatest integer less than or equal to \(x\), which of the following statements are true?

1 The domain is \((-\infty, \infty)\)
2 The range is \(\{0\} \cup\{-1\} \cup\{1\}\)
3 The domain is \((-\infty, 0) \cup[1, \infty)\)
4 The range is \(\{0\} \cup\{1\}\)
Sets, Relation and Function

117359 \(\{X \in R ;|\cos x| \geq \sin x\} \cap\left[0, \frac{3 \pi}{2}\right]\) is equal to

1 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{3 \pi}{4}, \frac{3 \pi}{2}\right]\)
2 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]\)
3 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{5 \pi}{4}, \frac{3 \pi}{2}\right]\)
4 \(\left[0, \frac{3 \pi}{2}\right]\)
Sets, Relation and Function

117360 Given that, \(x\) is a real number satisfying \(\frac{5 x^2-26 x+5}{3 x^2-10 x+3}\lt 0\), then

1 \(\mathrm{x}\lt \frac{1}{5}\)
2 \(\frac{1}{5}\lt x\lt 3\)
3 \(x>5\)
4 \(\frac{1}{5}\lt x\lt \frac{1}{3}\) or \(3\lt x\lt 5\)
Sets, Relation and Function

117357 The range of the function \(y=3\) sin \(\left(\sqrt{\frac{\pi^2}{16}-x^2}\right)\) is

1 \([0, \sqrt{3 / 2}]\)
2 \([0,1]\)
3 \([0,3 / \sqrt{2}]\)
4 \([0, \infty]\)
Sets, Relation and Function

117358 For the function \(f(x)=\left[\frac{1}{[x]}\right]\), where \([x]\) denotes the greatest integer less than or equal to \(x\), which of the following statements are true?

1 The domain is \((-\infty, \infty)\)
2 The range is \(\{0\} \cup\{-1\} \cup\{1\}\)
3 The domain is \((-\infty, 0) \cup[1, \infty)\)
4 The range is \(\{0\} \cup\{1\}\)
Sets, Relation and Function

117359 \(\{X \in R ;|\cos x| \geq \sin x\} \cap\left[0, \frac{3 \pi}{2}\right]\) is equal to

1 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{3 \pi}{4}, \frac{3 \pi}{2}\right]\)
2 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]\)
3 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{5 \pi}{4}, \frac{3 \pi}{2}\right]\)
4 \(\left[0, \frac{3 \pi}{2}\right]\)
Sets, Relation and Function

117360 Given that, \(x\) is a real number satisfying \(\frac{5 x^2-26 x+5}{3 x^2-10 x+3}\lt 0\), then

1 \(\mathrm{x}\lt \frac{1}{5}\)
2 \(\frac{1}{5}\lt x\lt 3\)
3 \(x>5\)
4 \(\frac{1}{5}\lt x\lt \frac{1}{3}\) or \(3\lt x\lt 5\)
Sets, Relation and Function

117357 The range of the function \(y=3\) sin \(\left(\sqrt{\frac{\pi^2}{16}-x^2}\right)\) is

1 \([0, \sqrt{3 / 2}]\)
2 \([0,1]\)
3 \([0,3 / \sqrt{2}]\)
4 \([0, \infty]\)
Sets, Relation and Function

117358 For the function \(f(x)=\left[\frac{1}{[x]}\right]\), where \([x]\) denotes the greatest integer less than or equal to \(x\), which of the following statements are true?

1 The domain is \((-\infty, \infty)\)
2 The range is \(\{0\} \cup\{-1\} \cup\{1\}\)
3 The domain is \((-\infty, 0) \cup[1, \infty)\)
4 The range is \(\{0\} \cup\{1\}\)
Sets, Relation and Function

117359 \(\{X \in R ;|\cos x| \geq \sin x\} \cap\left[0, \frac{3 \pi}{2}\right]\) is equal to

1 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{3 \pi}{4}, \frac{3 \pi}{2}\right]\)
2 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]\)
3 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{5 \pi}{4}, \frac{3 \pi}{2}\right]\)
4 \(\left[0, \frac{3 \pi}{2}\right]\)
Sets, Relation and Function

117360 Given that, \(x\) is a real number satisfying \(\frac{5 x^2-26 x+5}{3 x^2-10 x+3}\lt 0\), then

1 \(\mathrm{x}\lt \frac{1}{5}\)
2 \(\frac{1}{5}\lt x\lt 3\)
3 \(x>5\)
4 \(\frac{1}{5}\lt x\lt \frac{1}{3}\) or \(3\lt x\lt 5\)
Sets, Relation and Function

117357 The range of the function \(y=3\) sin \(\left(\sqrt{\frac{\pi^2}{16}-x^2}\right)\) is

1 \([0, \sqrt{3 / 2}]\)
2 \([0,1]\)
3 \([0,3 / \sqrt{2}]\)
4 \([0, \infty]\)
Sets, Relation and Function

117358 For the function \(f(x)=\left[\frac{1}{[x]}\right]\), where \([x]\) denotes the greatest integer less than or equal to \(x\), which of the following statements are true?

1 The domain is \((-\infty, \infty)\)
2 The range is \(\{0\} \cup\{-1\} \cup\{1\}\)
3 The domain is \((-\infty, 0) \cup[1, \infty)\)
4 The range is \(\{0\} \cup\{1\}\)
Sets, Relation and Function

117359 \(\{X \in R ;|\cos x| \geq \sin x\} \cap\left[0, \frac{3 \pi}{2}\right]\) is equal to

1 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{3 \pi}{4}, \frac{3 \pi}{2}\right]\)
2 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]\)
3 \(\left[0, \frac{\pi}{4}\right] \cup\left[\frac{5 \pi}{4}, \frac{3 \pi}{2}\right]\)
4 \(\left[0, \frac{3 \pi}{2}\right]\)
Sets, Relation and Function

117360 Given that, \(x\) is a real number satisfying \(\frac{5 x^2-26 x+5}{3 x^2-10 x+3}\lt 0\), then

1 \(\mathrm{x}\lt \frac{1}{5}\)
2 \(\frac{1}{5}\lt x\lt 3\)
3 \(x>5\)
4 \(\frac{1}{5}\lt x\lt \frac{1}{3}\) or \(3\lt x\lt 5\)