Domain, Co-domain and Range of Function
Sets, Relation and Function

117348 IF \(f:[2,3] \rightarrow R\) is defined by \(\mathrm{f}(\mathrm{x})=\mathrm{x}^3+3 \mathrm{x}-2\), then range \(f(x)\) is contained in the interval

1 \([1,12]\)
2 \([12,34]\)
3 \([35,50]\)
4 \([-12,12]\)
Sets, Relation and Function

117349 If \(f: R \rightarrow R\) is defined by \(f(x)=[2 x]-2[x]\) for \(x \in R\), where \([x]\) is the greatest integer not exceeding \(x\), then the range of \(f\) is:

1 \(\{x \in R: 0 \leq x \leq 1\}\)
2 \(\{0,1\}\)
3 \(\{x \in R: x>0\}\)
4 \(\{x \in R: x \leq 0\}\)
Sets, Relation and Function

117350 The solution set of the in equation \(\sqrt{x^2+6 x+5}>(8-x)\) is

1 \((8, \infty)\)
2 \(\left(\frac{59}{22}, 8\right)\)
3 \(\left(\frac{59}{22}, \infty\right)\)
4 \((-1, \infty)\)
Sets, Relation and Function

117352 The value of
\(\left\{x \in R \mid \log \left[(1.6)^{1-x^2}-(0.625)^{6(1+x)}\right] \in \mathbf{R}\right\}\)

1 \((-\infty,-1) \cup(7, \infty)\)
2 \((-1,5)\)
3 \((1,7)\)
4 \((-1,7)\)
Sets, Relation and Function

117353 If \(R\) is the set of all real number and \(f: R-\{2\}\)
\(\rightarrow R\) is defined by \(f(x)=\frac{2+x}{2-x}\) for \(x \in R-\{2\}\)

1 \(\mathrm{R}-\{-2\}\)
2 \(\mathrm{R}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{-1\}\)
Sets, Relation and Function

117348 IF \(f:[2,3] \rightarrow R\) is defined by \(\mathrm{f}(\mathrm{x})=\mathrm{x}^3+3 \mathrm{x}-2\), then range \(f(x)\) is contained in the interval

1 \([1,12]\)
2 \([12,34]\)
3 \([35,50]\)
4 \([-12,12]\)
Sets, Relation and Function

117349 If \(f: R \rightarrow R\) is defined by \(f(x)=[2 x]-2[x]\) for \(x \in R\), where \([x]\) is the greatest integer not exceeding \(x\), then the range of \(f\) is:

1 \(\{x \in R: 0 \leq x \leq 1\}\)
2 \(\{0,1\}\)
3 \(\{x \in R: x>0\}\)
4 \(\{x \in R: x \leq 0\}\)
Sets, Relation and Function

117350 The solution set of the in equation \(\sqrt{x^2+6 x+5}>(8-x)\) is

1 \((8, \infty)\)
2 \(\left(\frac{59}{22}, 8\right)\)
3 \(\left(\frac{59}{22}, \infty\right)\)
4 \((-1, \infty)\)
Sets, Relation and Function

117352 The value of
\(\left\{x \in R \mid \log \left[(1.6)^{1-x^2}-(0.625)^{6(1+x)}\right] \in \mathbf{R}\right\}\)

1 \((-\infty,-1) \cup(7, \infty)\)
2 \((-1,5)\)
3 \((1,7)\)
4 \((-1,7)\)
Sets, Relation and Function

117353 If \(R\) is the set of all real number and \(f: R-\{2\}\)
\(\rightarrow R\) is defined by \(f(x)=\frac{2+x}{2-x}\) for \(x \in R-\{2\}\)

1 \(\mathrm{R}-\{-2\}\)
2 \(\mathrm{R}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{-1\}\)
Sets, Relation and Function

117348 IF \(f:[2,3] \rightarrow R\) is defined by \(\mathrm{f}(\mathrm{x})=\mathrm{x}^3+3 \mathrm{x}-2\), then range \(f(x)\) is contained in the interval

1 \([1,12]\)
2 \([12,34]\)
3 \([35,50]\)
4 \([-12,12]\)
Sets, Relation and Function

117349 If \(f: R \rightarrow R\) is defined by \(f(x)=[2 x]-2[x]\) for \(x \in R\), where \([x]\) is the greatest integer not exceeding \(x\), then the range of \(f\) is:

1 \(\{x \in R: 0 \leq x \leq 1\}\)
2 \(\{0,1\}\)
3 \(\{x \in R: x>0\}\)
4 \(\{x \in R: x \leq 0\}\)
Sets, Relation and Function

117350 The solution set of the in equation \(\sqrt{x^2+6 x+5}>(8-x)\) is

1 \((8, \infty)\)
2 \(\left(\frac{59}{22}, 8\right)\)
3 \(\left(\frac{59}{22}, \infty\right)\)
4 \((-1, \infty)\)
Sets, Relation and Function

117352 The value of
\(\left\{x \in R \mid \log \left[(1.6)^{1-x^2}-(0.625)^{6(1+x)}\right] \in \mathbf{R}\right\}\)

1 \((-\infty,-1) \cup(7, \infty)\)
2 \((-1,5)\)
3 \((1,7)\)
4 \((-1,7)\)
Sets, Relation and Function

117353 If \(R\) is the set of all real number and \(f: R-\{2\}\)
\(\rightarrow R\) is defined by \(f(x)=\frac{2+x}{2-x}\) for \(x \in R-\{2\}\)

1 \(\mathrm{R}-\{-2\}\)
2 \(\mathrm{R}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{-1\}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117348 IF \(f:[2,3] \rightarrow R\) is defined by \(\mathrm{f}(\mathrm{x})=\mathrm{x}^3+3 \mathrm{x}-2\), then range \(f(x)\) is contained in the interval

1 \([1,12]\)
2 \([12,34]\)
3 \([35,50]\)
4 \([-12,12]\)
Sets, Relation and Function

117349 If \(f: R \rightarrow R\) is defined by \(f(x)=[2 x]-2[x]\) for \(x \in R\), where \([x]\) is the greatest integer not exceeding \(x\), then the range of \(f\) is:

1 \(\{x \in R: 0 \leq x \leq 1\}\)
2 \(\{0,1\}\)
3 \(\{x \in R: x>0\}\)
4 \(\{x \in R: x \leq 0\}\)
Sets, Relation and Function

117350 The solution set of the in equation \(\sqrt{x^2+6 x+5}>(8-x)\) is

1 \((8, \infty)\)
2 \(\left(\frac{59}{22}, 8\right)\)
3 \(\left(\frac{59}{22}, \infty\right)\)
4 \((-1, \infty)\)
Sets, Relation and Function

117352 The value of
\(\left\{x \in R \mid \log \left[(1.6)^{1-x^2}-(0.625)^{6(1+x)}\right] \in \mathbf{R}\right\}\)

1 \((-\infty,-1) \cup(7, \infty)\)
2 \((-1,5)\)
3 \((1,7)\)
4 \((-1,7)\)
Sets, Relation and Function

117353 If \(R\) is the set of all real number and \(f: R-\{2\}\)
\(\rightarrow R\) is defined by \(f(x)=\frac{2+x}{2-x}\) for \(x \in R-\{2\}\)

1 \(\mathrm{R}-\{-2\}\)
2 \(\mathrm{R}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{-1\}\)
Sets, Relation and Function

117348 IF \(f:[2,3] \rightarrow R\) is defined by \(\mathrm{f}(\mathrm{x})=\mathrm{x}^3+3 \mathrm{x}-2\), then range \(f(x)\) is contained in the interval

1 \([1,12]\)
2 \([12,34]\)
3 \([35,50]\)
4 \([-12,12]\)
Sets, Relation and Function

117349 If \(f: R \rightarrow R\) is defined by \(f(x)=[2 x]-2[x]\) for \(x \in R\), where \([x]\) is the greatest integer not exceeding \(x\), then the range of \(f\) is:

1 \(\{x \in R: 0 \leq x \leq 1\}\)
2 \(\{0,1\}\)
3 \(\{x \in R: x>0\}\)
4 \(\{x \in R: x \leq 0\}\)
Sets, Relation and Function

117350 The solution set of the in equation \(\sqrt{x^2+6 x+5}>(8-x)\) is

1 \((8, \infty)\)
2 \(\left(\frac{59}{22}, 8\right)\)
3 \(\left(\frac{59}{22}, \infty\right)\)
4 \((-1, \infty)\)
Sets, Relation and Function

117352 The value of
\(\left\{x \in R \mid \log \left[(1.6)^{1-x^2}-(0.625)^{6(1+x)}\right] \in \mathbf{R}\right\}\)

1 \((-\infty,-1) \cup(7, \infty)\)
2 \((-1,5)\)
3 \((1,7)\)
4 \((-1,7)\)
Sets, Relation and Function

117353 If \(R\) is the set of all real number and \(f: R-\{2\}\)
\(\rightarrow R\) is defined by \(f(x)=\frac{2+x}{2-x}\) for \(x \in R-\{2\}\)

1 \(\mathrm{R}-\{-2\}\)
2 \(\mathrm{R}\)
3 \(\mathrm{R}-\{1\}\)
4 \(\mathrm{R}-\{-1\}\)