Domain, Co-domain and Range of Function
Sets, Relation and Function

117310 If \(=2 \leq 3 x-4 \leq 5, x \in R\), then \(x\) belongs to theinterval

1 \([0,1]\)
2 \([1,3]\)
3 \(\left[\frac{1}{2}, 3\right]\)
4 \([2,3]\)
Sets, Relation and Function

117312 Let \(f:(2, \infty) \rightarrow I R\) be the function defined by \(f(x)=x^2-4 x+5\). then, the range of \(f\) is

1 IR
2 \([1, \infty)\)
3 \([4, \infty]\)
4 \([5, \infty]\)
Sets, Relation and Function

117320 The domain of the real function \(f(x)=\) \(\frac{1}{\sqrt{4-x^2}}\) is

1 the set of all real numbers
2 the set of all positive
3 \((-2,2)\)
4 \([-2,2]\)
Sets, Relation and Function

117341 The domain of
\(f(x)=\cos ^{-1}\left(\frac{x-3}{2}\right)-\log _{10}(4-x)\) is.....

1 \((1,4)\)
2 \([1,4)\)
3 \((1,4]\)
4 \([1,4]\)
Sets, Relation and Function

117351 The set of all real values of \(x\) for which the real valued function \(f(x)=\left(1+\frac{1}{x}\right)^x\) is defined, is

1 \((0, \infty)\)
2 \(\mathrm{R}-\{0\}\)
3 \((-\infty,-1) \cup(0, \infty)\)
4 \(\mathrm{R}-\{0,-1\}\)
Sets, Relation and Function

117310 If \(=2 \leq 3 x-4 \leq 5, x \in R\), then \(x\) belongs to theinterval

1 \([0,1]\)
2 \([1,3]\)
3 \(\left[\frac{1}{2}, 3\right]\)
4 \([2,3]\)
Sets, Relation and Function

117312 Let \(f:(2, \infty) \rightarrow I R\) be the function defined by \(f(x)=x^2-4 x+5\). then, the range of \(f\) is

1 IR
2 \([1, \infty)\)
3 \([4, \infty]\)
4 \([5, \infty]\)
Sets, Relation and Function

117320 The domain of the real function \(f(x)=\) \(\frac{1}{\sqrt{4-x^2}}\) is

1 the set of all real numbers
2 the set of all positive
3 \((-2,2)\)
4 \([-2,2]\)
Sets, Relation and Function

117341 The domain of
\(f(x)=\cos ^{-1}\left(\frac{x-3}{2}\right)-\log _{10}(4-x)\) is.....

1 \((1,4)\)
2 \([1,4)\)
3 \((1,4]\)
4 \([1,4]\)
Sets, Relation and Function

117351 The set of all real values of \(x\) for which the real valued function \(f(x)=\left(1+\frac{1}{x}\right)^x\) is defined, is

1 \((0, \infty)\)
2 \(\mathrm{R}-\{0\}\)
3 \((-\infty,-1) \cup(0, \infty)\)
4 \(\mathrm{R}-\{0,-1\}\)
Sets, Relation and Function

117310 If \(=2 \leq 3 x-4 \leq 5, x \in R\), then \(x\) belongs to theinterval

1 \([0,1]\)
2 \([1,3]\)
3 \(\left[\frac{1}{2}, 3\right]\)
4 \([2,3]\)
Sets, Relation and Function

117312 Let \(f:(2, \infty) \rightarrow I R\) be the function defined by \(f(x)=x^2-4 x+5\). then, the range of \(f\) is

1 IR
2 \([1, \infty)\)
3 \([4, \infty]\)
4 \([5, \infty]\)
Sets, Relation and Function

117320 The domain of the real function \(f(x)=\) \(\frac{1}{\sqrt{4-x^2}}\) is

1 the set of all real numbers
2 the set of all positive
3 \((-2,2)\)
4 \([-2,2]\)
Sets, Relation and Function

117341 The domain of
\(f(x)=\cos ^{-1}\left(\frac{x-3}{2}\right)-\log _{10}(4-x)\) is.....

1 \((1,4)\)
2 \([1,4)\)
3 \((1,4]\)
4 \([1,4]\)
Sets, Relation and Function

117351 The set of all real values of \(x\) for which the real valued function \(f(x)=\left(1+\frac{1}{x}\right)^x\) is defined, is

1 \((0, \infty)\)
2 \(\mathrm{R}-\{0\}\)
3 \((-\infty,-1) \cup(0, \infty)\)
4 \(\mathrm{R}-\{0,-1\}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117310 If \(=2 \leq 3 x-4 \leq 5, x \in R\), then \(x\) belongs to theinterval

1 \([0,1]\)
2 \([1,3]\)
3 \(\left[\frac{1}{2}, 3\right]\)
4 \([2,3]\)
Sets, Relation and Function

117312 Let \(f:(2, \infty) \rightarrow I R\) be the function defined by \(f(x)=x^2-4 x+5\). then, the range of \(f\) is

1 IR
2 \([1, \infty)\)
3 \([4, \infty]\)
4 \([5, \infty]\)
Sets, Relation and Function

117320 The domain of the real function \(f(x)=\) \(\frac{1}{\sqrt{4-x^2}}\) is

1 the set of all real numbers
2 the set of all positive
3 \((-2,2)\)
4 \([-2,2]\)
Sets, Relation and Function

117341 The domain of
\(f(x)=\cos ^{-1}\left(\frac{x-3}{2}\right)-\log _{10}(4-x)\) is.....

1 \((1,4)\)
2 \([1,4)\)
3 \((1,4]\)
4 \([1,4]\)
Sets, Relation and Function

117351 The set of all real values of \(x\) for which the real valued function \(f(x)=\left(1+\frac{1}{x}\right)^x\) is defined, is

1 \((0, \infty)\)
2 \(\mathrm{R}-\{0\}\)
3 \((-\infty,-1) \cup(0, \infty)\)
4 \(\mathrm{R}-\{0,-1\}\)
Sets, Relation and Function

117310 If \(=2 \leq 3 x-4 \leq 5, x \in R\), then \(x\) belongs to theinterval

1 \([0,1]\)
2 \([1,3]\)
3 \(\left[\frac{1}{2}, 3\right]\)
4 \([2,3]\)
Sets, Relation and Function

117312 Let \(f:(2, \infty) \rightarrow I R\) be the function defined by \(f(x)=x^2-4 x+5\). then, the range of \(f\) is

1 IR
2 \([1, \infty)\)
3 \([4, \infty]\)
4 \([5, \infty]\)
Sets, Relation and Function

117320 The domain of the real function \(f(x)=\) \(\frac{1}{\sqrt{4-x^2}}\) is

1 the set of all real numbers
2 the set of all positive
3 \((-2,2)\)
4 \([-2,2]\)
Sets, Relation and Function

117341 The domain of
\(f(x)=\cos ^{-1}\left(\frac{x-3}{2}\right)-\log _{10}(4-x)\) is.....

1 \((1,4)\)
2 \([1,4)\)
3 \((1,4]\)
4 \([1,4]\)
Sets, Relation and Function

117351 The set of all real values of \(x\) for which the real valued function \(f(x)=\left(1+\frac{1}{x}\right)^x\) is defined, is

1 \((0, \infty)\)
2 \(\mathrm{R}-\{0\}\)
3 \((-\infty,-1) \cup(0, \infty)\)
4 \(\mathrm{R}-\{0,-1\}\)