Domain, Co-domain and Range of Function
Sets, Relation and Function

117283 Domain of the real values function \(f(x)=\frac{x+2}{9-x^2}\) is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{3\}\)
3 \(\mathrm{R}-\{-3,3\}\)
4 \(-3 \leq \mathrm{x} \leq 3\)
Sets, Relation and Function

117287 If \(f: \mathbf{R}-\{2\} \rightarrow \mathbf{R}\) is function defined by \(f(x)=\frac{x^2-4}{x-2}\), then its range is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{2\}\)
3 \(\mathrm{R}-\{4\}\)
4 \(\mathrm{R}-\{-2,2\}\)
Sets, Relation and Function

117289 The range of function \(f(x)=\sin x+\operatorname{cosec} x\) is

1 \([-1,1]\)
2 \((-1,1)\)
3 \(\mathrm{R}-[-2,2]\)
4 \(\mathrm{R}-(-2,2)\)
Sets, Relation and Function

117302 The domain of the definition of the function \(y=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}\) is

1 \(x \geq-2\)
2 \(-3\lt x \leq-2\)
3 \(-2 \leq x\lt 0\)
4 \(-2 \leq x\lt 1\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117283 Domain of the real values function \(f(x)=\frac{x+2}{9-x^2}\) is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{3\}\)
3 \(\mathrm{R}-\{-3,3\}\)
4 \(-3 \leq \mathrm{x} \leq 3\)
Sets, Relation and Function

117287 If \(f: \mathbf{R}-\{2\} \rightarrow \mathbf{R}\) is function defined by \(f(x)=\frac{x^2-4}{x-2}\), then its range is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{2\}\)
3 \(\mathrm{R}-\{4\}\)
4 \(\mathrm{R}-\{-2,2\}\)
Sets, Relation and Function

117289 The range of function \(f(x)=\sin x+\operatorname{cosec} x\) is

1 \([-1,1]\)
2 \((-1,1)\)
3 \(\mathrm{R}-[-2,2]\)
4 \(\mathrm{R}-(-2,2)\)
Sets, Relation and Function

117302 The domain of the definition of the function \(y=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}\) is

1 \(x \geq-2\)
2 \(-3\lt x \leq-2\)
3 \(-2 \leq x\lt 0\)
4 \(-2 \leq x\lt 1\)
Sets, Relation and Function

117283 Domain of the real values function \(f(x)=\frac{x+2}{9-x^2}\) is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{3\}\)
3 \(\mathrm{R}-\{-3,3\}\)
4 \(-3 \leq \mathrm{x} \leq 3\)
Sets, Relation and Function

117287 If \(f: \mathbf{R}-\{2\} \rightarrow \mathbf{R}\) is function defined by \(f(x)=\frac{x^2-4}{x-2}\), then its range is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{2\}\)
3 \(\mathrm{R}-\{4\}\)
4 \(\mathrm{R}-\{-2,2\}\)
Sets, Relation and Function

117289 The range of function \(f(x)=\sin x+\operatorname{cosec} x\) is

1 \([-1,1]\)
2 \((-1,1)\)
3 \(\mathrm{R}-[-2,2]\)
4 \(\mathrm{R}-(-2,2)\)
Sets, Relation and Function

117302 The domain of the definition of the function \(y=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}\) is

1 \(x \geq-2\)
2 \(-3\lt x \leq-2\)
3 \(-2 \leq x\lt 0\)
4 \(-2 \leq x\lt 1\)
Sets, Relation and Function

117283 Domain of the real values function \(f(x)=\frac{x+2}{9-x^2}\) is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{3\}\)
3 \(\mathrm{R}-\{-3,3\}\)
4 \(-3 \leq \mathrm{x} \leq 3\)
Sets, Relation and Function

117287 If \(f: \mathbf{R}-\{2\} \rightarrow \mathbf{R}\) is function defined by \(f(x)=\frac{x^2-4}{x-2}\), then its range is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{2\}\)
3 \(\mathrm{R}-\{4\}\)
4 \(\mathrm{R}-\{-2,2\}\)
Sets, Relation and Function

117289 The range of function \(f(x)=\sin x+\operatorname{cosec} x\) is

1 \([-1,1]\)
2 \((-1,1)\)
3 \(\mathrm{R}-[-2,2]\)
4 \(\mathrm{R}-(-2,2)\)
Sets, Relation and Function

117302 The domain of the definition of the function \(y=\frac{1}{\log _{10}(1-x)}+\sqrt{x+2}\) is

1 \(x \geq-2\)
2 \(-3\lt x \leq-2\)
3 \(-2 \leq x\lt 0\)
4 \(-2 \leq x\lt 1\)