Composition Function
Sets, Relation and Function

117260 If \(g(x)=x^2+x-1\) and (gof) (x) \(=4 x^2-10 x+5\), then \(f\left(\frac{5}{4}\right)\) is equal to

1 \(-\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 \(-\frac{3}{2}\)
4 \(\frac{1}{2}\)
Sets, Relation and Function

117261 Let \(f: R-\left\{\frac{\alpha}{6}\right\} \rightarrow R\) be defined by \(f(x)=\) \(\frac{5 x+3}{6 x-\alpha}\), Then, the value of \(\alpha\) for which (fof) (x) \(=\mathbf{x}\) for all \(\mathrm{x} \in \mathbf{R}-\left\{\frac{\alpha}{6}\right\}\) is

1 No such \(\alpha\) exists
2 5
3 8
4 6
Sets, Relation and Function

117262 For a suitable choosen real constant a, late function \(\mathbf{f}: \mathbf{R}-(-\mathbf{a}) \rightarrow \mathbf{R}\) be defined by \(=\) \(\frac{a-x}{a+x}\) further. Suppose that for any real number \(x-a\) and \(f(x) \neq-a\) (fof) (x) then \(f\left(\frac{-1}{2}\right)\) is equal to

1 -3
2 \(\frac{-1}{3}\)
3 \(\frac{1}{3}\)
4 3
Sets, Relation and Function

117264 If \(f(x)=\cos (\log x)\), then \(f(x)\). \(\mathbf{f}(\mathbf{y})\) \(-\frac{1}{2}\left(\mathbf{f}\left(\frac{\mathbf{x}}{\mathbf{y}}\right)+\mathbf{f}(\mathbf{x y})\right)\) has the value

1 -1
2 0
3 \(\frac{1}{2}\)
4 -2
Sets, Relation and Function

117265 Le \(f(x)=-2 x^2+1\) and \(g(x)=4 x-3\), then (gof) (-1) is equal to

1 9
2 -9
3 7
4 -7
5 -8
Sets, Relation and Function

117260 If \(g(x)=x^2+x-1\) and (gof) (x) \(=4 x^2-10 x+5\), then \(f\left(\frac{5}{4}\right)\) is equal to

1 \(-\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 \(-\frac{3}{2}\)
4 \(\frac{1}{2}\)
Sets, Relation and Function

117261 Let \(f: R-\left\{\frac{\alpha}{6}\right\} \rightarrow R\) be defined by \(f(x)=\) \(\frac{5 x+3}{6 x-\alpha}\), Then, the value of \(\alpha\) for which (fof) (x) \(=\mathbf{x}\) for all \(\mathrm{x} \in \mathbf{R}-\left\{\frac{\alpha}{6}\right\}\) is

1 No such \(\alpha\) exists
2 5
3 8
4 6
Sets, Relation and Function

117262 For a suitable choosen real constant a, late function \(\mathbf{f}: \mathbf{R}-(-\mathbf{a}) \rightarrow \mathbf{R}\) be defined by \(=\) \(\frac{a-x}{a+x}\) further. Suppose that for any real number \(x-a\) and \(f(x) \neq-a\) (fof) (x) then \(f\left(\frac{-1}{2}\right)\) is equal to

1 -3
2 \(\frac{-1}{3}\)
3 \(\frac{1}{3}\)
4 3
Sets, Relation and Function

117264 If \(f(x)=\cos (\log x)\), then \(f(x)\). \(\mathbf{f}(\mathbf{y})\) \(-\frac{1}{2}\left(\mathbf{f}\left(\frac{\mathbf{x}}{\mathbf{y}}\right)+\mathbf{f}(\mathbf{x y})\right)\) has the value

1 -1
2 0
3 \(\frac{1}{2}\)
4 -2
Sets, Relation and Function

117265 Le \(f(x)=-2 x^2+1\) and \(g(x)=4 x-3\), then (gof) (-1) is equal to

1 9
2 -9
3 7
4 -7
5 -8
Sets, Relation and Function

117260 If \(g(x)=x^2+x-1\) and (gof) (x) \(=4 x^2-10 x+5\), then \(f\left(\frac{5}{4}\right)\) is equal to

1 \(-\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 \(-\frac{3}{2}\)
4 \(\frac{1}{2}\)
Sets, Relation and Function

117261 Let \(f: R-\left\{\frac{\alpha}{6}\right\} \rightarrow R\) be defined by \(f(x)=\) \(\frac{5 x+3}{6 x-\alpha}\), Then, the value of \(\alpha\) for which (fof) (x) \(=\mathbf{x}\) for all \(\mathrm{x} \in \mathbf{R}-\left\{\frac{\alpha}{6}\right\}\) is

1 No such \(\alpha\) exists
2 5
3 8
4 6
Sets, Relation and Function

117262 For a suitable choosen real constant a, late function \(\mathbf{f}: \mathbf{R}-(-\mathbf{a}) \rightarrow \mathbf{R}\) be defined by \(=\) \(\frac{a-x}{a+x}\) further. Suppose that for any real number \(x-a\) and \(f(x) \neq-a\) (fof) (x) then \(f\left(\frac{-1}{2}\right)\) is equal to

1 -3
2 \(\frac{-1}{3}\)
3 \(\frac{1}{3}\)
4 3
Sets, Relation and Function

117264 If \(f(x)=\cos (\log x)\), then \(f(x)\). \(\mathbf{f}(\mathbf{y})\) \(-\frac{1}{2}\left(\mathbf{f}\left(\frac{\mathbf{x}}{\mathbf{y}}\right)+\mathbf{f}(\mathbf{x y})\right)\) has the value

1 -1
2 0
3 \(\frac{1}{2}\)
4 -2
Sets, Relation and Function

117265 Le \(f(x)=-2 x^2+1\) and \(g(x)=4 x-3\), then (gof) (-1) is equal to

1 9
2 -9
3 7
4 -7
5 -8
Sets, Relation and Function

117260 If \(g(x)=x^2+x-1\) and (gof) (x) \(=4 x^2-10 x+5\), then \(f\left(\frac{5}{4}\right)\) is equal to

1 \(-\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 \(-\frac{3}{2}\)
4 \(\frac{1}{2}\)
Sets, Relation and Function

117261 Let \(f: R-\left\{\frac{\alpha}{6}\right\} \rightarrow R\) be defined by \(f(x)=\) \(\frac{5 x+3}{6 x-\alpha}\), Then, the value of \(\alpha\) for which (fof) (x) \(=\mathbf{x}\) for all \(\mathrm{x} \in \mathbf{R}-\left\{\frac{\alpha}{6}\right\}\) is

1 No such \(\alpha\) exists
2 5
3 8
4 6
Sets, Relation and Function

117262 For a suitable choosen real constant a, late function \(\mathbf{f}: \mathbf{R}-(-\mathbf{a}) \rightarrow \mathbf{R}\) be defined by \(=\) \(\frac{a-x}{a+x}\) further. Suppose that for any real number \(x-a\) and \(f(x) \neq-a\) (fof) (x) then \(f\left(\frac{-1}{2}\right)\) is equal to

1 -3
2 \(\frac{-1}{3}\)
3 \(\frac{1}{3}\)
4 3
Sets, Relation and Function

117264 If \(f(x)=\cos (\log x)\), then \(f(x)\). \(\mathbf{f}(\mathbf{y})\) \(-\frac{1}{2}\left(\mathbf{f}\left(\frac{\mathbf{x}}{\mathbf{y}}\right)+\mathbf{f}(\mathbf{x y})\right)\) has the value

1 -1
2 0
3 \(\frac{1}{2}\)
4 -2
Sets, Relation and Function

117265 Le \(f(x)=-2 x^2+1\) and \(g(x)=4 x-3\), then (gof) (-1) is equal to

1 9
2 -9
3 7
4 -7
5 -8
Sets, Relation and Function

117260 If \(g(x)=x^2+x-1\) and (gof) (x) \(=4 x^2-10 x+5\), then \(f\left(\frac{5}{4}\right)\) is equal to

1 \(-\frac{1}{2}\)
2 \(\frac{3}{2}\)
3 \(-\frac{3}{2}\)
4 \(\frac{1}{2}\)
Sets, Relation and Function

117261 Let \(f: R-\left\{\frac{\alpha}{6}\right\} \rightarrow R\) be defined by \(f(x)=\) \(\frac{5 x+3}{6 x-\alpha}\), Then, the value of \(\alpha\) for which (fof) (x) \(=\mathbf{x}\) for all \(\mathrm{x} \in \mathbf{R}-\left\{\frac{\alpha}{6}\right\}\) is

1 No such \(\alpha\) exists
2 5
3 8
4 6
Sets, Relation and Function

117262 For a suitable choosen real constant a, late function \(\mathbf{f}: \mathbf{R}-(-\mathbf{a}) \rightarrow \mathbf{R}\) be defined by \(=\) \(\frac{a-x}{a+x}\) further. Suppose that for any real number \(x-a\) and \(f(x) \neq-a\) (fof) (x) then \(f\left(\frac{-1}{2}\right)\) is equal to

1 -3
2 \(\frac{-1}{3}\)
3 \(\frac{1}{3}\)
4 3
Sets, Relation and Function

117264 If \(f(x)=\cos (\log x)\), then \(f(x)\). \(\mathbf{f}(\mathbf{y})\) \(-\frac{1}{2}\left(\mathbf{f}\left(\frac{\mathbf{x}}{\mathbf{y}}\right)+\mathbf{f}(\mathbf{x y})\right)\) has the value

1 -1
2 0
3 \(\frac{1}{2}\)
4 -2
Sets, Relation and Function

117265 Le \(f(x)=-2 x^2+1\) and \(g(x)=4 x-3\), then (gof) (-1) is equal to

1 9
2 -9
3 7
4 -7
5 -8