Composition Function
Sets, Relation and Function

117256 If for all values of \(\mathrm{x}\) and \(\mathrm{y}, f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y})\) and \(f(5)=2, f^{\prime}(0)=3\), then \(f^{\prime}(5)\) is

1 3
2 4
3 5
4 6
Sets, Relation and Function

117257 If \(\boldsymbol{f}: \mathbf{R} \rightarrow \mathbf{R}\) is defined as
\(f(x)=\left(2020-x^{2019}\right)^{1 / 2019}, \forall x \in \mathrm{R}\),find
(fo fo fof) \(\left(\frac{2019}{2020}\right)\)

1 1
2 0
3 \(\frac{2019}{2020}\)
4 \(\frac{2020}{2019}\)
Sets, Relation and Function

117258 If \(f(x)=x-\frac{1}{x}, x \neq 0\), then \(3 f(x)=\)

1 \(3[\mathrm{f}(\mathrm{x})]^2-\mathrm{f}\left(\mathrm{x}^2\right)\)
2 \([f(x)]^2-f\left(x^3\right)\)
3 \(f\left(x^3\right)-[f(x)]^3\)
4 \(f\left(x^3\right)-f\left(x^2\right)\)
Sets, Relation and Function

117259 For \(x \in\left(0, \frac{3}{2}\right)\) let \(f(x)=\sqrt{x} g(x)=\tan x\) and \(h(x)=\frac{1-x^2}{1+x^2}\). If \(\phi(x)=((h o f) o g)(x)\), then \(\phi\) \(\left(\frac{\pi}{3}\right)\) is equal to

1 \(\tan \frac{\pi}{12}\)
2 \(\tan \frac{11 \pi}{12}\)
3 \(\tan \frac{7 \pi}{12}\)
4 \(\tan \frac{5 \pi}{12}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117256 If for all values of \(\mathrm{x}\) and \(\mathrm{y}, f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y})\) and \(f(5)=2, f^{\prime}(0)=3\), then \(f^{\prime}(5)\) is

1 3
2 4
3 5
4 6
Sets, Relation and Function

117257 If \(\boldsymbol{f}: \mathbf{R} \rightarrow \mathbf{R}\) is defined as
\(f(x)=\left(2020-x^{2019}\right)^{1 / 2019}, \forall x \in \mathrm{R}\),find
(fo fo fof) \(\left(\frac{2019}{2020}\right)\)

1 1
2 0
3 \(\frac{2019}{2020}\)
4 \(\frac{2020}{2019}\)
Sets, Relation and Function

117258 If \(f(x)=x-\frac{1}{x}, x \neq 0\), then \(3 f(x)=\)

1 \(3[\mathrm{f}(\mathrm{x})]^2-\mathrm{f}\left(\mathrm{x}^2\right)\)
2 \([f(x)]^2-f\left(x^3\right)\)
3 \(f\left(x^3\right)-[f(x)]^3\)
4 \(f\left(x^3\right)-f\left(x^2\right)\)
Sets, Relation and Function

117259 For \(x \in\left(0, \frac{3}{2}\right)\) let \(f(x)=\sqrt{x} g(x)=\tan x\) and \(h(x)=\frac{1-x^2}{1+x^2}\). If \(\phi(x)=((h o f) o g)(x)\), then \(\phi\) \(\left(\frac{\pi}{3}\right)\) is equal to

1 \(\tan \frac{\pi}{12}\)
2 \(\tan \frac{11 \pi}{12}\)
3 \(\tan \frac{7 \pi}{12}\)
4 \(\tan \frac{5 \pi}{12}\)
Sets, Relation and Function

117256 If for all values of \(\mathrm{x}\) and \(\mathrm{y}, f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y})\) and \(f(5)=2, f^{\prime}(0)=3\), then \(f^{\prime}(5)\) is

1 3
2 4
3 5
4 6
Sets, Relation and Function

117257 If \(\boldsymbol{f}: \mathbf{R} \rightarrow \mathbf{R}\) is defined as
\(f(x)=\left(2020-x^{2019}\right)^{1 / 2019}, \forall x \in \mathrm{R}\),find
(fo fo fof) \(\left(\frac{2019}{2020}\right)\)

1 1
2 0
3 \(\frac{2019}{2020}\)
4 \(\frac{2020}{2019}\)
Sets, Relation and Function

117258 If \(f(x)=x-\frac{1}{x}, x \neq 0\), then \(3 f(x)=\)

1 \(3[\mathrm{f}(\mathrm{x})]^2-\mathrm{f}\left(\mathrm{x}^2\right)\)
2 \([f(x)]^2-f\left(x^3\right)\)
3 \(f\left(x^3\right)-[f(x)]^3\)
4 \(f\left(x^3\right)-f\left(x^2\right)\)
Sets, Relation and Function

117259 For \(x \in\left(0, \frac{3}{2}\right)\) let \(f(x)=\sqrt{x} g(x)=\tan x\) and \(h(x)=\frac{1-x^2}{1+x^2}\). If \(\phi(x)=((h o f) o g)(x)\), then \(\phi\) \(\left(\frac{\pi}{3}\right)\) is equal to

1 \(\tan \frac{\pi}{12}\)
2 \(\tan \frac{11 \pi}{12}\)
3 \(\tan \frac{7 \pi}{12}\)
4 \(\tan \frac{5 \pi}{12}\)
Sets, Relation and Function

117256 If for all values of \(\mathrm{x}\) and \(\mathrm{y}, f(\mathrm{x}+\mathrm{y})=f(\mathrm{x}) f(\mathrm{y})\) and \(f(5)=2, f^{\prime}(0)=3\), then \(f^{\prime}(5)\) is

1 3
2 4
3 5
4 6
Sets, Relation and Function

117257 If \(\boldsymbol{f}: \mathbf{R} \rightarrow \mathbf{R}\) is defined as
\(f(x)=\left(2020-x^{2019}\right)^{1 / 2019}, \forall x \in \mathrm{R}\),find
(fo fo fof) \(\left(\frac{2019}{2020}\right)\)

1 1
2 0
3 \(\frac{2019}{2020}\)
4 \(\frac{2020}{2019}\)
Sets, Relation and Function

117258 If \(f(x)=x-\frac{1}{x}, x \neq 0\), then \(3 f(x)=\)

1 \(3[\mathrm{f}(\mathrm{x})]^2-\mathrm{f}\left(\mathrm{x}^2\right)\)
2 \([f(x)]^2-f\left(x^3\right)\)
3 \(f\left(x^3\right)-[f(x)]^3\)
4 \(f\left(x^3\right)-f\left(x^2\right)\)
Sets, Relation and Function

117259 For \(x \in\left(0, \frac{3}{2}\right)\) let \(f(x)=\sqrt{x} g(x)=\tan x\) and \(h(x)=\frac{1-x^2}{1+x^2}\). If \(\phi(x)=((h o f) o g)(x)\), then \(\phi\) \(\left(\frac{\pi}{3}\right)\) is equal to

1 \(\tan \frac{\pi}{12}\)
2 \(\tan \frac{11 \pi}{12}\)
3 \(\tan \frac{7 \pi}{12}\)
4 \(\tan \frac{5 \pi}{12}\)