Composition Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117236 If \(f(x)=x^2+1\), then \(f[f(x)]=\)

1 \(x^4-x^2-2\)
2 \(x^4+1\)
3 \(x^4+2 x^2+2\)
4 \(x^4+x^2+2\)
Sets, Relation and Function

117248 If \(f(x)=e^x\) and \(g(x)=\log e^x\), then which of the following is TRUE?

1 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\} \neq \mathrm{g}\{\mathrm{f}(\mathrm{x})\}\)
2 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}=\mathrm{g}\{\mathrm{f}(\mathrm{x})\}\)
3 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}+\mathrm{g}\{\mathrm{f}(\mathrm{x})\}=0\)
4 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}-\mathrm{g}\{\mathrm{f}(\mathrm{x})\}=1\)
Sets, Relation and Function

117249 If \(f(x)=8 x^3, g(x)=x^{1 / 3}\), then fog(x) is

1 \(8^3 x\)
2 \(8 x^3\)
3 \(8 \mathrm{x}\)
4 \((8 x)^{1 / 3}\)
Sets, Relation and Function

117250 If \(f: R \rightarrow R\) is defined by \(f(x)=\frac{x}{x^2+1}\) find \(\mathbf{f}(\mathbf{f}(2))\).

1 \(\frac{10}{29}\)
2 29
3 \(\frac{1}{29}\)
4 \(\frac{29}{10}\)
Sets, Relation and Function

117236 If \(f(x)=x^2+1\), then \(f[f(x)]=\)

1 \(x^4-x^2-2\)
2 \(x^4+1\)
3 \(x^4+2 x^2+2\)
4 \(x^4+x^2+2\)
Sets, Relation and Function

117248 If \(f(x)=e^x\) and \(g(x)=\log e^x\), then which of the following is TRUE?

1 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\} \neq \mathrm{g}\{\mathrm{f}(\mathrm{x})\}\)
2 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}=\mathrm{g}\{\mathrm{f}(\mathrm{x})\}\)
3 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}+\mathrm{g}\{\mathrm{f}(\mathrm{x})\}=0\)
4 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}-\mathrm{g}\{\mathrm{f}(\mathrm{x})\}=1\)
Sets, Relation and Function

117249 If \(f(x)=8 x^3, g(x)=x^{1 / 3}\), then fog(x) is

1 \(8^3 x\)
2 \(8 x^3\)
3 \(8 \mathrm{x}\)
4 \((8 x)^{1 / 3}\)
Sets, Relation and Function

117250 If \(f: R \rightarrow R\) is defined by \(f(x)=\frac{x}{x^2+1}\) find \(\mathbf{f}(\mathbf{f}(2))\).

1 \(\frac{10}{29}\)
2 29
3 \(\frac{1}{29}\)
4 \(\frac{29}{10}\)
Sets, Relation and Function

117236 If \(f(x)=x^2+1\), then \(f[f(x)]=\)

1 \(x^4-x^2-2\)
2 \(x^4+1\)
3 \(x^4+2 x^2+2\)
4 \(x^4+x^2+2\)
Sets, Relation and Function

117248 If \(f(x)=e^x\) and \(g(x)=\log e^x\), then which of the following is TRUE?

1 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\} \neq \mathrm{g}\{\mathrm{f}(\mathrm{x})\}\)
2 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}=\mathrm{g}\{\mathrm{f}(\mathrm{x})\}\)
3 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}+\mathrm{g}\{\mathrm{f}(\mathrm{x})\}=0\)
4 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}-\mathrm{g}\{\mathrm{f}(\mathrm{x})\}=1\)
Sets, Relation and Function

117249 If \(f(x)=8 x^3, g(x)=x^{1 / 3}\), then fog(x) is

1 \(8^3 x\)
2 \(8 x^3\)
3 \(8 \mathrm{x}\)
4 \((8 x)^{1 / 3}\)
Sets, Relation and Function

117250 If \(f: R \rightarrow R\) is defined by \(f(x)=\frac{x}{x^2+1}\) find \(\mathbf{f}(\mathbf{f}(2))\).

1 \(\frac{10}{29}\)
2 29
3 \(\frac{1}{29}\)
4 \(\frac{29}{10}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117236 If \(f(x)=x^2+1\), then \(f[f(x)]=\)

1 \(x^4-x^2-2\)
2 \(x^4+1\)
3 \(x^4+2 x^2+2\)
4 \(x^4+x^2+2\)
Sets, Relation and Function

117248 If \(f(x)=e^x\) and \(g(x)=\log e^x\), then which of the following is TRUE?

1 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\} \neq \mathrm{g}\{\mathrm{f}(\mathrm{x})\}\)
2 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}=\mathrm{g}\{\mathrm{f}(\mathrm{x})\}\)
3 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}+\mathrm{g}\{\mathrm{f}(\mathrm{x})\}=0\)
4 \(\mathrm{f}\{\mathrm{g}(\mathrm{x})\}-\mathrm{g}\{\mathrm{f}(\mathrm{x})\}=1\)
Sets, Relation and Function

117249 If \(f(x)=8 x^3, g(x)=x^{1 / 3}\), then fog(x) is

1 \(8^3 x\)
2 \(8 x^3\)
3 \(8 \mathrm{x}\)
4 \((8 x)^{1 / 3}\)
Sets, Relation and Function

117250 If \(f: R \rightarrow R\) is defined by \(f(x)=\frac{x}{x^2+1}\) find \(\mathbf{f}(\mathbf{f}(2))\).

1 \(\frac{10}{29}\)
2 29
3 \(\frac{1}{29}\)
4 \(\frac{29}{10}\)