Inverse of Function and Binary Operation
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117224 Let \(f(x)=\frac{4 x+3}{x+2}\). Then the value of \(f^{-1}(-2)\) is equal to

1 \(\frac{7}{5}\)
2 \(\frac{-7}{6}\)
3 \(\frac{-7}{5}\)
4 \(\frac{7}{6}\)
5 \(\frac{5}{6}\)
Sets, Relation and Function

117225 Let \(\odot\) be a binary operation on \(Q-\{0\}\) defined by \(\mathbf{a} \odot \mathbf{b}=\frac{\mathbf{a}}{\mathbf{b}}\). Then \(\mathbf{1} \odot(\mathbf{2} \odot \mathbf{( 3} \odot \mathbf{4})\) is equal to

1 \(\frac{3}{2}\)
2 \(\frac{8}{3}\)
3 \(\frac{4}{3}\)
4 \(\frac{3}{4}\)
5 \(\frac{3}{8}\)
Sets, Relation and Function

117145 Let \(A=(u, v, w, z)\) and \(B=\{3,5\}\), then the number of relations from \(A\) to \(B\) is

1 256
2 1024
3 512
4 64
Sets, Relation and Function

117170 The binary represents of 60 is

1 101110
2 111100
3 110011
4 110000
Sets, Relation and Function

117224 Let \(f(x)=\frac{4 x+3}{x+2}\). Then the value of \(f^{-1}(-2)\) is equal to

1 \(\frac{7}{5}\)
2 \(\frac{-7}{6}\)
3 \(\frac{-7}{5}\)
4 \(\frac{7}{6}\)
5 \(\frac{5}{6}\)
Sets, Relation and Function

117225 Let \(\odot\) be a binary operation on \(Q-\{0\}\) defined by \(\mathbf{a} \odot \mathbf{b}=\frac{\mathbf{a}}{\mathbf{b}}\). Then \(\mathbf{1} \odot(\mathbf{2} \odot \mathbf{( 3} \odot \mathbf{4})\) is equal to

1 \(\frac{3}{2}\)
2 \(\frac{8}{3}\)
3 \(\frac{4}{3}\)
4 \(\frac{3}{4}\)
5 \(\frac{3}{8}\)
Sets, Relation and Function

117145 Let \(A=(u, v, w, z)\) and \(B=\{3,5\}\), then the number of relations from \(A\) to \(B\) is

1 256
2 1024
3 512
4 64
Sets, Relation and Function

117170 The binary represents of 60 is

1 101110
2 111100
3 110011
4 110000
Sets, Relation and Function

117224 Let \(f(x)=\frac{4 x+3}{x+2}\). Then the value of \(f^{-1}(-2)\) is equal to

1 \(\frac{7}{5}\)
2 \(\frac{-7}{6}\)
3 \(\frac{-7}{5}\)
4 \(\frac{7}{6}\)
5 \(\frac{5}{6}\)
Sets, Relation and Function

117225 Let \(\odot\) be a binary operation on \(Q-\{0\}\) defined by \(\mathbf{a} \odot \mathbf{b}=\frac{\mathbf{a}}{\mathbf{b}}\). Then \(\mathbf{1} \odot(\mathbf{2} \odot \mathbf{( 3} \odot \mathbf{4})\) is equal to

1 \(\frac{3}{2}\)
2 \(\frac{8}{3}\)
3 \(\frac{4}{3}\)
4 \(\frac{3}{4}\)
5 \(\frac{3}{8}\)
Sets, Relation and Function

117145 Let \(A=(u, v, w, z)\) and \(B=\{3,5\}\), then the number of relations from \(A\) to \(B\) is

1 256
2 1024
3 512
4 64
Sets, Relation and Function

117170 The binary represents of 60 is

1 101110
2 111100
3 110011
4 110000
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117224 Let \(f(x)=\frac{4 x+3}{x+2}\). Then the value of \(f^{-1}(-2)\) is equal to

1 \(\frac{7}{5}\)
2 \(\frac{-7}{6}\)
3 \(\frac{-7}{5}\)
4 \(\frac{7}{6}\)
5 \(\frac{5}{6}\)
Sets, Relation and Function

117225 Let \(\odot\) be a binary operation on \(Q-\{0\}\) defined by \(\mathbf{a} \odot \mathbf{b}=\frac{\mathbf{a}}{\mathbf{b}}\). Then \(\mathbf{1} \odot(\mathbf{2} \odot \mathbf{( 3} \odot \mathbf{4})\) is equal to

1 \(\frac{3}{2}\)
2 \(\frac{8}{3}\)
3 \(\frac{4}{3}\)
4 \(\frac{3}{4}\)
5 \(\frac{3}{8}\)
Sets, Relation and Function

117145 Let \(A=(u, v, w, z)\) and \(B=\{3,5\}\), then the number of relations from \(A\) to \(B\) is

1 256
2 1024
3 512
4 64
Sets, Relation and Function

117170 The binary represents of 60 is

1 101110
2 111100
3 110011
4 110000