Inverse of Function and Binary Operation
Sets, Relation and Function

117199 If every element of a group \(G\) is its own inverse, then \(\mathbf{G}\) is

1 finite
2 infinite
3 not abelian
4 abelian
Sets, Relation and Function

117200 Let \(f: \mathbf{R} \rightarrow \mathbf{R}, \mathbf{g}: \mathbf{R} \rightarrow \mathbf{R}\), be two functions such that \(f(x)=2 x-3, g(x)=x^3+5\) the function \((\text { fog })^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{1 / 3}\)
2 \(\left(x-\frac{7}{2}\right)^{1 / 3}\)
3 \(\left(\frac{x-2}{7}\right)^{1 / 3}\)
4 \(\left(\frac{\mathrm{x}-7}{2}\right)^{1 / 3}\)
Sets, Relation and Function

117201 If \(f: R \rightarrow R\) is defined as \(f(x)=(1-x)^{1 / 3}\) then \(f^{-1}(x)\) is

1 \((1-x)^{-1 / 3}\)
2 \((1-x)^3\)
3 \(1-x^3\)
4 \(1-x^{1 / 3}\)
Sets, Relation and Function

117203 If \(\mathbf{f :} \mathbf{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathbf{R}\) to be defined by :
\(f(x)=\frac{3 x+1}{5 x-3}\), then

1 \(f^{-1}(x)=2 f(x)\)
2 \(\mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
3 \(\mathrm{f}^{-1}(\mathrm{x})=-\mathrm{f}(\mathrm{x})\)
4 \(\mathrm{f}^{-1}(\mathrm{x})\) does not exists
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117199 If every element of a group \(G\) is its own inverse, then \(\mathbf{G}\) is

1 finite
2 infinite
3 not abelian
4 abelian
Sets, Relation and Function

117200 Let \(f: \mathbf{R} \rightarrow \mathbf{R}, \mathbf{g}: \mathbf{R} \rightarrow \mathbf{R}\), be two functions such that \(f(x)=2 x-3, g(x)=x^3+5\) the function \((\text { fog })^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{1 / 3}\)
2 \(\left(x-\frac{7}{2}\right)^{1 / 3}\)
3 \(\left(\frac{x-2}{7}\right)^{1 / 3}\)
4 \(\left(\frac{\mathrm{x}-7}{2}\right)^{1 / 3}\)
Sets, Relation and Function

117201 If \(f: R \rightarrow R\) is defined as \(f(x)=(1-x)^{1 / 3}\) then \(f^{-1}(x)\) is

1 \((1-x)^{-1 / 3}\)
2 \((1-x)^3\)
3 \(1-x^3\)
4 \(1-x^{1 / 3}\)
Sets, Relation and Function

117203 If \(\mathbf{f :} \mathbf{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathbf{R}\) to be defined by :
\(f(x)=\frac{3 x+1}{5 x-3}\), then

1 \(f^{-1}(x)=2 f(x)\)
2 \(\mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
3 \(\mathrm{f}^{-1}(\mathrm{x})=-\mathrm{f}(\mathrm{x})\)
4 \(\mathrm{f}^{-1}(\mathrm{x})\) does not exists
Sets, Relation and Function

117199 If every element of a group \(G\) is its own inverse, then \(\mathbf{G}\) is

1 finite
2 infinite
3 not abelian
4 abelian
Sets, Relation and Function

117200 Let \(f: \mathbf{R} \rightarrow \mathbf{R}, \mathbf{g}: \mathbf{R} \rightarrow \mathbf{R}\), be two functions such that \(f(x)=2 x-3, g(x)=x^3+5\) the function \((\text { fog })^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{1 / 3}\)
2 \(\left(x-\frac{7}{2}\right)^{1 / 3}\)
3 \(\left(\frac{x-2}{7}\right)^{1 / 3}\)
4 \(\left(\frac{\mathrm{x}-7}{2}\right)^{1 / 3}\)
Sets, Relation and Function

117201 If \(f: R \rightarrow R\) is defined as \(f(x)=(1-x)^{1 / 3}\) then \(f^{-1}(x)\) is

1 \((1-x)^{-1 / 3}\)
2 \((1-x)^3\)
3 \(1-x^3\)
4 \(1-x^{1 / 3}\)
Sets, Relation and Function

117203 If \(\mathbf{f :} \mathbf{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathbf{R}\) to be defined by :
\(f(x)=\frac{3 x+1}{5 x-3}\), then

1 \(f^{-1}(x)=2 f(x)\)
2 \(\mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
3 \(\mathrm{f}^{-1}(\mathrm{x})=-\mathrm{f}(\mathrm{x})\)
4 \(\mathrm{f}^{-1}(\mathrm{x})\) does not exists
Sets, Relation and Function

117199 If every element of a group \(G\) is its own inverse, then \(\mathbf{G}\) is

1 finite
2 infinite
3 not abelian
4 abelian
Sets, Relation and Function

117200 Let \(f: \mathbf{R} \rightarrow \mathbf{R}, \mathbf{g}: \mathbf{R} \rightarrow \mathbf{R}\), be two functions such that \(f(x)=2 x-3, g(x)=x^3+5\) the function \((\text { fog })^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{1 / 3}\)
2 \(\left(x-\frac{7}{2}\right)^{1 / 3}\)
3 \(\left(\frac{x-2}{7}\right)^{1 / 3}\)
4 \(\left(\frac{\mathrm{x}-7}{2}\right)^{1 / 3}\)
Sets, Relation and Function

117201 If \(f: R \rightarrow R\) is defined as \(f(x)=(1-x)^{1 / 3}\) then \(f^{-1}(x)\) is

1 \((1-x)^{-1 / 3}\)
2 \((1-x)^3\)
3 \(1-x^3\)
4 \(1-x^{1 / 3}\)
Sets, Relation and Function

117203 If \(\mathbf{f :} \mathbf{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathbf{R}\) to be defined by :
\(f(x)=\frac{3 x+1}{5 x-3}\), then

1 \(f^{-1}(x)=2 f(x)\)
2 \(\mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
3 \(\mathrm{f}^{-1}(\mathrm{x})=-\mathrm{f}(\mathrm{x})\)
4 \(\mathrm{f}^{-1}(\mathrm{x})\) does not exists