Inverse of Function and Binary Operation
Sets, Relation and Function

117154 If \(f(x)=\left[1-(x-3)^4\right]^{1 / 7}\), and \(f^{-1}(x)\),

1 \(3+(1-x)^{7 / 4}\)
2 \(3+\left(1-x^4\right)^7\)
3 \(3+\left(1-x^7\right)^{1 / 4}\)
4 \(3-\left(1-x^4\right)^{1 / 7}\)
Sets, Relation and Function

117156 If the set of integers with the operation defined by \(a * b=a+b-1\) forms a group, what is the inverse of \(a\) ?

1 \(-\mathrm{a}\)
2 \(2 \mathrm{a}\)
3 \(2-\mathrm{a}\)
4 \(1-\mathrm{a}\)
Sets, Relation and Function

117171 Let \(f: R \rightarrow R, g: R \rightarrow R\) be two functions such that \(f(x)=2 x-3, g(x)=x^3+5\). the function \((f \circ g)^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{1 / 3}\)
2 \(\left(x-\frac{7}{2}\right)^{1 / 3}\)
3 \(\left(\frac{x-2}{7}\right)^{1 / 3}\)
4 \(\left(\frac{x-7}{2}\right)^{1 / 3}\)
Sets, Relation and Function

117157 Inverse of the function \(f(x)=\frac{\mathrm{e}^x-\mathrm{e}^{-x}}{\mathrm{e}^x+\mathrm{e}^{-x}}+2\) is

1 \(\log _e\left(\frac{x-2}{x-1}\right)^{1 / 2}\)
2 \(\log _e\left(\frac{x-1}{3-x}\right)^{1 / 2}\)
3 \(\log _e\left(\frac{x}{2-x}\right)^{1 / 2}\)
4 \(\log _e\left(\frac{x-1}{x+1}\right)^{1 / 2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117154 If \(f(x)=\left[1-(x-3)^4\right]^{1 / 7}\), and \(f^{-1}(x)\),

1 \(3+(1-x)^{7 / 4}\)
2 \(3+\left(1-x^4\right)^7\)
3 \(3+\left(1-x^7\right)^{1 / 4}\)
4 \(3-\left(1-x^4\right)^{1 / 7}\)
Sets, Relation and Function

117156 If the set of integers with the operation defined by \(a * b=a+b-1\) forms a group, what is the inverse of \(a\) ?

1 \(-\mathrm{a}\)
2 \(2 \mathrm{a}\)
3 \(2-\mathrm{a}\)
4 \(1-\mathrm{a}\)
Sets, Relation and Function

117171 Let \(f: R \rightarrow R, g: R \rightarrow R\) be two functions such that \(f(x)=2 x-3, g(x)=x^3+5\). the function \((f \circ g)^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{1 / 3}\)
2 \(\left(x-\frac{7}{2}\right)^{1 / 3}\)
3 \(\left(\frac{x-2}{7}\right)^{1 / 3}\)
4 \(\left(\frac{x-7}{2}\right)^{1 / 3}\)
Sets, Relation and Function

117157 Inverse of the function \(f(x)=\frac{\mathrm{e}^x-\mathrm{e}^{-x}}{\mathrm{e}^x+\mathrm{e}^{-x}}+2\) is

1 \(\log _e\left(\frac{x-2}{x-1}\right)^{1 / 2}\)
2 \(\log _e\left(\frac{x-1}{3-x}\right)^{1 / 2}\)
3 \(\log _e\left(\frac{x}{2-x}\right)^{1 / 2}\)
4 \(\log _e\left(\frac{x-1}{x+1}\right)^{1 / 2}\)
Sets, Relation and Function

117154 If \(f(x)=\left[1-(x-3)^4\right]^{1 / 7}\), and \(f^{-1}(x)\),

1 \(3+(1-x)^{7 / 4}\)
2 \(3+\left(1-x^4\right)^7\)
3 \(3+\left(1-x^7\right)^{1 / 4}\)
4 \(3-\left(1-x^4\right)^{1 / 7}\)
Sets, Relation and Function

117156 If the set of integers with the operation defined by \(a * b=a+b-1\) forms a group, what is the inverse of \(a\) ?

1 \(-\mathrm{a}\)
2 \(2 \mathrm{a}\)
3 \(2-\mathrm{a}\)
4 \(1-\mathrm{a}\)
Sets, Relation and Function

117171 Let \(f: R \rightarrow R, g: R \rightarrow R\) be two functions such that \(f(x)=2 x-3, g(x)=x^3+5\). the function \((f \circ g)^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{1 / 3}\)
2 \(\left(x-\frac{7}{2}\right)^{1 / 3}\)
3 \(\left(\frac{x-2}{7}\right)^{1 / 3}\)
4 \(\left(\frac{x-7}{2}\right)^{1 / 3}\)
Sets, Relation and Function

117157 Inverse of the function \(f(x)=\frac{\mathrm{e}^x-\mathrm{e}^{-x}}{\mathrm{e}^x+\mathrm{e}^{-x}}+2\) is

1 \(\log _e\left(\frac{x-2}{x-1}\right)^{1 / 2}\)
2 \(\log _e\left(\frac{x-1}{3-x}\right)^{1 / 2}\)
3 \(\log _e\left(\frac{x}{2-x}\right)^{1 / 2}\)
4 \(\log _e\left(\frac{x-1}{x+1}\right)^{1 / 2}\)
Sets, Relation and Function

117154 If \(f(x)=\left[1-(x-3)^4\right]^{1 / 7}\), and \(f^{-1}(x)\),

1 \(3+(1-x)^{7 / 4}\)
2 \(3+\left(1-x^4\right)^7\)
3 \(3+\left(1-x^7\right)^{1 / 4}\)
4 \(3-\left(1-x^4\right)^{1 / 7}\)
Sets, Relation and Function

117156 If the set of integers with the operation defined by \(a * b=a+b-1\) forms a group, what is the inverse of \(a\) ?

1 \(-\mathrm{a}\)
2 \(2 \mathrm{a}\)
3 \(2-\mathrm{a}\)
4 \(1-\mathrm{a}\)
Sets, Relation and Function

117171 Let \(f: R \rightarrow R, g: R \rightarrow R\) be two functions such that \(f(x)=2 x-3, g(x)=x^3+5\). the function \((f \circ g)^{-1}(x)\) is equal to

1 \(\left(\frac{x+7}{2}\right)^{1 / 3}\)
2 \(\left(x-\frac{7}{2}\right)^{1 / 3}\)
3 \(\left(\frac{x-2}{7}\right)^{1 / 3}\)
4 \(\left(\frac{x-7}{2}\right)^{1 / 3}\)
Sets, Relation and Function

117157 Inverse of the function \(f(x)=\frac{\mathrm{e}^x-\mathrm{e}^{-x}}{\mathrm{e}^x+\mathrm{e}^{-x}}+2\) is

1 \(\log _e\left(\frac{x-2}{x-1}\right)^{1 / 2}\)
2 \(\log _e\left(\frac{x-1}{3-x}\right)^{1 / 2}\)
3 \(\log _e\left(\frac{x}{2-x}\right)^{1 / 2}\)
4 \(\log _e\left(\frac{x-1}{x+1}\right)^{1 / 2}\)