Types of Functions
Sets, Relation and Function

117123 The number of onto mappings from the set \(A=\{1,2 \ldots . . ., 100\}\) to set \(B=\{1,2\}\) is :

1 \(2^{100}-2\)
2 \(2^{100}\)
3 \(2^{99}-2\)
4 \(2^{99}\)
Sets, Relation and Function

117124 If the function \(f:(-\infty, \infty) \rightarrow B\) defined by \(f(x)=-x^2+6 x-8\) is bijective, then \(B=\)

1 \([1, \infty)\)
2 \((-\infty, 1]\)
3 \((-\infty, \infty)\)
4 None of these
Sets, Relation and Function

117125 Let \(E=\{1,2,3,4\}\) and \(F=\{1,2\}\). Then the number of onto functions from \(E\) to \(F\) is

1 14
2 16
3 12
4 8
Sets, Relation and Function

117126 If \(A=\{x \mid x \in N, x \leq 5\}, B=\left\{x \mid x \in Z, x^2-5 x+6\right.\) \(=0\}\), then the number of onto functions from \(A\) to \(B\) is

1 2
2 30
3 23
4 32
Sets, Relation and Function

117123 The number of onto mappings from the set \(A=\{1,2 \ldots . . ., 100\}\) to set \(B=\{1,2\}\) is :

1 \(2^{100}-2\)
2 \(2^{100}\)
3 \(2^{99}-2\)
4 \(2^{99}\)
Sets, Relation and Function

117124 If the function \(f:(-\infty, \infty) \rightarrow B\) defined by \(f(x)=-x^2+6 x-8\) is bijective, then \(B=\)

1 \([1, \infty)\)
2 \((-\infty, 1]\)
3 \((-\infty, \infty)\)
4 None of these
Sets, Relation and Function

117125 Let \(E=\{1,2,3,4\}\) and \(F=\{1,2\}\). Then the number of onto functions from \(E\) to \(F\) is

1 14
2 16
3 12
4 8
Sets, Relation and Function

117126 If \(A=\{x \mid x \in N, x \leq 5\}, B=\left\{x \mid x \in Z, x^2-5 x+6\right.\) \(=0\}\), then the number of onto functions from \(A\) to \(B\) is

1 2
2 30
3 23
4 32
Sets, Relation and Function

117123 The number of onto mappings from the set \(A=\{1,2 \ldots . . ., 100\}\) to set \(B=\{1,2\}\) is :

1 \(2^{100}-2\)
2 \(2^{100}\)
3 \(2^{99}-2\)
4 \(2^{99}\)
Sets, Relation and Function

117124 If the function \(f:(-\infty, \infty) \rightarrow B\) defined by \(f(x)=-x^2+6 x-8\) is bijective, then \(B=\)

1 \([1, \infty)\)
2 \((-\infty, 1]\)
3 \((-\infty, \infty)\)
4 None of these
Sets, Relation and Function

117125 Let \(E=\{1,2,3,4\}\) and \(F=\{1,2\}\). Then the number of onto functions from \(E\) to \(F\) is

1 14
2 16
3 12
4 8
Sets, Relation and Function

117126 If \(A=\{x \mid x \in N, x \leq 5\}, B=\left\{x \mid x \in Z, x^2-5 x+6\right.\) \(=0\}\), then the number of onto functions from \(A\) to \(B\) is

1 2
2 30
3 23
4 32
Sets, Relation and Function

117123 The number of onto mappings from the set \(A=\{1,2 \ldots . . ., 100\}\) to set \(B=\{1,2\}\) is :

1 \(2^{100}-2\)
2 \(2^{100}\)
3 \(2^{99}-2\)
4 \(2^{99}\)
Sets, Relation and Function

117124 If the function \(f:(-\infty, \infty) \rightarrow B\) defined by \(f(x)=-x^2+6 x-8\) is bijective, then \(B=\)

1 \([1, \infty)\)
2 \((-\infty, 1]\)
3 \((-\infty, \infty)\)
4 None of these
Sets, Relation and Function

117125 Let \(E=\{1,2,3,4\}\) and \(F=\{1,2\}\). Then the number of onto functions from \(E\) to \(F\) is

1 14
2 16
3 12
4 8
Sets, Relation and Function

117126 If \(A=\{x \mid x \in N, x \leq 5\}, B=\left\{x \mid x \in Z, x^2-5 x+6\right.\) \(=0\}\), then the number of onto functions from \(A\) to \(B\) is

1 2
2 30
3 23
4 32