Types of Functions
Sets, Relation and Function

117114 The number of elements in the set \(S=\left\{x \in R: 2 \cos \left(\frac{x^2+6}{6}\right)=4^x+4^{-x}\right\}\) is :

1 1
2 3
3 0
4 Infinite
Sets, Relation and Function

117115 Let \(f(x)\) be a function such that \(f(x+y)=f(x)\). \(f(y)\) for all \(x, y \in N\). If \(f(1)=3\) and \(\sum_{k=1}^n f(k)=\) 3279 , then the value of \(n\) is

1 8
2 6
3 7
4 9
Sets, Relation and Function

117116 If \(f: R \rightarrow A\) defined by \(f(x)=\frac{1}{x^2+2 x+2} \forall x \in R\) is surjective, then \(\mathbf{A}=\)

1 \([1, \infty]\)
2 \((1, \infty)\)
3 \([0,1]\)
4 \((0,1]\)
Sets, Relation and Function

117117 Let \(\mathbf{f}: \mathbf{R}-\{\mathbf{n}\} \rightarrow \mathbf{R}\) be a function defined by \(f(x)=\frac{x-m}{x-n}\) such that \(m \neq n\), then

1 \(f\) is one one into function
2 \(f\) is one one onto function
3 \(f\) is many one into function
4 \(f\) is many one onto function
Sets, Relation and Function

117118 The function \(f:[0, \infty) \rightarrow \mathbf{R}\) given by \(f(x)=\frac{\mathbf{x}}{\mathbf{x}+\mathbf{1}}\) is

1 one-one and onto
2 one-one but not onto
3 onto but not one-one
4 Neither one-one nor onto
Sets, Relation and Function

117114 The number of elements in the set \(S=\left\{x \in R: 2 \cos \left(\frac{x^2+6}{6}\right)=4^x+4^{-x}\right\}\) is :

1 1
2 3
3 0
4 Infinite
Sets, Relation and Function

117115 Let \(f(x)\) be a function such that \(f(x+y)=f(x)\). \(f(y)\) for all \(x, y \in N\). If \(f(1)=3\) and \(\sum_{k=1}^n f(k)=\) 3279 , then the value of \(n\) is

1 8
2 6
3 7
4 9
Sets, Relation and Function

117116 If \(f: R \rightarrow A\) defined by \(f(x)=\frac{1}{x^2+2 x+2} \forall x \in R\) is surjective, then \(\mathbf{A}=\)

1 \([1, \infty]\)
2 \((1, \infty)\)
3 \([0,1]\)
4 \((0,1]\)
Sets, Relation and Function

117117 Let \(\mathbf{f}: \mathbf{R}-\{\mathbf{n}\} \rightarrow \mathbf{R}\) be a function defined by \(f(x)=\frac{x-m}{x-n}\) such that \(m \neq n\), then

1 \(f\) is one one into function
2 \(f\) is one one onto function
3 \(f\) is many one into function
4 \(f\) is many one onto function
Sets, Relation and Function

117118 The function \(f:[0, \infty) \rightarrow \mathbf{R}\) given by \(f(x)=\frac{\mathbf{x}}{\mathbf{x}+\mathbf{1}}\) is

1 one-one and onto
2 one-one but not onto
3 onto but not one-one
4 Neither one-one nor onto
Sets, Relation and Function

117114 The number of elements in the set \(S=\left\{x \in R: 2 \cos \left(\frac{x^2+6}{6}\right)=4^x+4^{-x}\right\}\) is :

1 1
2 3
3 0
4 Infinite
Sets, Relation and Function

117115 Let \(f(x)\) be a function such that \(f(x+y)=f(x)\). \(f(y)\) for all \(x, y \in N\). If \(f(1)=3\) and \(\sum_{k=1}^n f(k)=\) 3279 , then the value of \(n\) is

1 8
2 6
3 7
4 9
Sets, Relation and Function

117116 If \(f: R \rightarrow A\) defined by \(f(x)=\frac{1}{x^2+2 x+2} \forall x \in R\) is surjective, then \(\mathbf{A}=\)

1 \([1, \infty]\)
2 \((1, \infty)\)
3 \([0,1]\)
4 \((0,1]\)
Sets, Relation and Function

117117 Let \(\mathbf{f}: \mathbf{R}-\{\mathbf{n}\} \rightarrow \mathbf{R}\) be a function defined by \(f(x)=\frac{x-m}{x-n}\) such that \(m \neq n\), then

1 \(f\) is one one into function
2 \(f\) is one one onto function
3 \(f\) is many one into function
4 \(f\) is many one onto function
Sets, Relation and Function

117118 The function \(f:[0, \infty) \rightarrow \mathbf{R}\) given by \(f(x)=\frac{\mathbf{x}}{\mathbf{x}+\mathbf{1}}\) is

1 one-one and onto
2 one-one but not onto
3 onto but not one-one
4 Neither one-one nor onto
Sets, Relation and Function

117114 The number of elements in the set \(S=\left\{x \in R: 2 \cos \left(\frac{x^2+6}{6}\right)=4^x+4^{-x}\right\}\) is :

1 1
2 3
3 0
4 Infinite
Sets, Relation and Function

117115 Let \(f(x)\) be a function such that \(f(x+y)=f(x)\). \(f(y)\) for all \(x, y \in N\). If \(f(1)=3\) and \(\sum_{k=1}^n f(k)=\) 3279 , then the value of \(n\) is

1 8
2 6
3 7
4 9
Sets, Relation and Function

117116 If \(f: R \rightarrow A\) defined by \(f(x)=\frac{1}{x^2+2 x+2} \forall x \in R\) is surjective, then \(\mathbf{A}=\)

1 \([1, \infty]\)
2 \((1, \infty)\)
3 \([0,1]\)
4 \((0,1]\)
Sets, Relation and Function

117117 Let \(\mathbf{f}: \mathbf{R}-\{\mathbf{n}\} \rightarrow \mathbf{R}\) be a function defined by \(f(x)=\frac{x-m}{x-n}\) such that \(m \neq n\), then

1 \(f\) is one one into function
2 \(f\) is one one onto function
3 \(f\) is many one into function
4 \(f\) is many one onto function
Sets, Relation and Function

117118 The function \(f:[0, \infty) \rightarrow \mathbf{R}\) given by \(f(x)=\frac{\mathbf{x}}{\mathbf{x}+\mathbf{1}}\) is

1 one-one and onto
2 one-one but not onto
3 onto but not one-one
4 Neither one-one nor onto
Sets, Relation and Function

117114 The number of elements in the set \(S=\left\{x \in R: 2 \cos \left(\frac{x^2+6}{6}\right)=4^x+4^{-x}\right\}\) is :

1 1
2 3
3 0
4 Infinite
Sets, Relation and Function

117115 Let \(f(x)\) be a function such that \(f(x+y)=f(x)\). \(f(y)\) for all \(x, y \in N\). If \(f(1)=3\) and \(\sum_{k=1}^n f(k)=\) 3279 , then the value of \(n\) is

1 8
2 6
3 7
4 9
Sets, Relation and Function

117116 If \(f: R \rightarrow A\) defined by \(f(x)=\frac{1}{x^2+2 x+2} \forall x \in R\) is surjective, then \(\mathbf{A}=\)

1 \([1, \infty]\)
2 \((1, \infty)\)
3 \([0,1]\)
4 \((0,1]\)
Sets, Relation and Function

117117 Let \(\mathbf{f}: \mathbf{R}-\{\mathbf{n}\} \rightarrow \mathbf{R}\) be a function defined by \(f(x)=\frac{x-m}{x-n}\) such that \(m \neq n\), then

1 \(f\) is one one into function
2 \(f\) is one one onto function
3 \(f\) is many one into function
4 \(f\) is many one onto function
Sets, Relation and Function

117118 The function \(f:[0, \infty) \rightarrow \mathbf{R}\) given by \(f(x)=\frac{\mathbf{x}}{\mathbf{x}+\mathbf{1}}\) is

1 one-one and onto
2 one-one but not onto
3 onto but not one-one
4 Neither one-one nor onto