117087
Let \(\mathrm{N}\) be the set of all natural numbers, \(\mathrm{Z}\) be the set of all integers and \(\sigma: N \rightarrow Z\) be defined by
\(\sigma(n)=\left\{\begin{array}{l}\frac{n}{2}, \text { if nis even } \\ -\frac{n-1}{2} \text {, if nis odd }\end{array}\right.\) then
117087
Let \(\mathrm{N}\) be the set of all natural numbers, \(\mathrm{Z}\) be the set of all integers and \(\sigma: N \rightarrow Z\) be defined by
\(\sigma(n)=\left\{\begin{array}{l}\frac{n}{2}, \text { if nis even } \\ -\frac{n-1}{2} \text {, if nis odd }\end{array}\right.\) then
117087
Let \(\mathrm{N}\) be the set of all natural numbers, \(\mathrm{Z}\) be the set of all integers and \(\sigma: N \rightarrow Z\) be defined by
\(\sigma(n)=\left\{\begin{array}{l}\frac{n}{2}, \text { if nis even } \\ -\frac{n-1}{2} \text {, if nis odd }\end{array}\right.\) then
117087
Let \(\mathrm{N}\) be the set of all natural numbers, \(\mathrm{Z}\) be the set of all integers and \(\sigma: N \rightarrow Z\) be defined by
\(\sigma(n)=\left\{\begin{array}{l}\frac{n}{2}, \text { if nis even } \\ -\frac{n-1}{2} \text {, if nis odd }\end{array}\right.\) then
117087
Let \(\mathrm{N}\) be the set of all natural numbers, \(\mathrm{Z}\) be the set of all integers and \(\sigma: N \rightarrow Z\) be defined by
\(\sigma(n)=\left\{\begin{array}{l}\frac{n}{2}, \text { if nis even } \\ -\frac{n-1}{2} \text {, if nis odd }\end{array}\right.\) then