Types of Functions
Sets, Relation and Function

117057 Let \(x=(8 \sqrt{3}+13)^{13}\) and \(y=(7 \sqrt{2}+9)^9\). If [t] denotes the greatest integer \(\leq t\), then

1 \([x]\) is even but \([y]\) is odd
2 \([\mathrm{x}]+[\mathrm{y}]\) is even
3 \([x]\) and \([y]\) are both odd
4 \([x]\) is odd but \([y]\) is even
Sets, Relation and Function

117058 Let \(A=\left(x_1, x_2, x_3, \ldots . ., x_7\right), B=\left(y_1, y_2, y_3\right)\). The total number of functions \(f: \mathrm{A} \rightarrow \mathrm{B}\) that are onto and there are exactly three elements \(x\) in A such that \(f(x)=y_2\) is equal to

1 490
2 510
3 630
4 None of these
Sets, Relation and Function

117060 Which of the following function is injective map?

1 \(f(x)=x^2+2, x \in(-\infty, \infty)\)
2 \(f(x)=|x+2|, x \in[-2, \infty)\)
3 \(f(x)=(x-4)(x-5), x \in(-\infty, \infty)\)
4 \(f(\mathrm{x})=\frac{4 \mathrm{x}^2+3 \mathrm{x}-5}{4+3 \mathrm{x}-5 \mathrm{x}^2}, \mathrm{x} \in(-\infty, \infty)\)
Sets, Relation and Function

117062 The set of zeros of the function \(f(x)=0\) is nonempty, when \(f(x)\) equals

1 \(e^{-\mathrm{x}}+\mathrm{x}\)
2 \(|\mathrm{x}|+(\mathrm{x}-2)^2\)
3 \(x-\ln x\)
4 \(x+e^x\)
Sets, Relation and Function

117057 Let \(x=(8 \sqrt{3}+13)^{13}\) and \(y=(7 \sqrt{2}+9)^9\). If [t] denotes the greatest integer \(\leq t\), then

1 \([x]\) is even but \([y]\) is odd
2 \([\mathrm{x}]+[\mathrm{y}]\) is even
3 \([x]\) and \([y]\) are both odd
4 \([x]\) is odd but \([y]\) is even
Sets, Relation and Function

117058 Let \(A=\left(x_1, x_2, x_3, \ldots . ., x_7\right), B=\left(y_1, y_2, y_3\right)\). The total number of functions \(f: \mathrm{A} \rightarrow \mathrm{B}\) that are onto and there are exactly three elements \(x\) in A such that \(f(x)=y_2\) is equal to

1 490
2 510
3 630
4 None of these
Sets, Relation and Function

117060 Which of the following function is injective map?

1 \(f(x)=x^2+2, x \in(-\infty, \infty)\)
2 \(f(x)=|x+2|, x \in[-2, \infty)\)
3 \(f(x)=(x-4)(x-5), x \in(-\infty, \infty)\)
4 \(f(\mathrm{x})=\frac{4 \mathrm{x}^2+3 \mathrm{x}-5}{4+3 \mathrm{x}-5 \mathrm{x}^2}, \mathrm{x} \in(-\infty, \infty)\)
Sets, Relation and Function

117062 The set of zeros of the function \(f(x)=0\) is nonempty, when \(f(x)\) equals

1 \(e^{-\mathrm{x}}+\mathrm{x}\)
2 \(|\mathrm{x}|+(\mathrm{x}-2)^2\)
3 \(x-\ln x\)
4 \(x+e^x\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117057 Let \(x=(8 \sqrt{3}+13)^{13}\) and \(y=(7 \sqrt{2}+9)^9\). If [t] denotes the greatest integer \(\leq t\), then

1 \([x]\) is even but \([y]\) is odd
2 \([\mathrm{x}]+[\mathrm{y}]\) is even
3 \([x]\) and \([y]\) are both odd
4 \([x]\) is odd but \([y]\) is even
Sets, Relation and Function

117058 Let \(A=\left(x_1, x_2, x_3, \ldots . ., x_7\right), B=\left(y_1, y_2, y_3\right)\). The total number of functions \(f: \mathrm{A} \rightarrow \mathrm{B}\) that are onto and there are exactly three elements \(x\) in A such that \(f(x)=y_2\) is equal to

1 490
2 510
3 630
4 None of these
Sets, Relation and Function

117060 Which of the following function is injective map?

1 \(f(x)=x^2+2, x \in(-\infty, \infty)\)
2 \(f(x)=|x+2|, x \in[-2, \infty)\)
3 \(f(x)=(x-4)(x-5), x \in(-\infty, \infty)\)
4 \(f(\mathrm{x})=\frac{4 \mathrm{x}^2+3 \mathrm{x}-5}{4+3 \mathrm{x}-5 \mathrm{x}^2}, \mathrm{x} \in(-\infty, \infty)\)
Sets, Relation and Function

117062 The set of zeros of the function \(f(x)=0\) is nonempty, when \(f(x)\) equals

1 \(e^{-\mathrm{x}}+\mathrm{x}\)
2 \(|\mathrm{x}|+(\mathrm{x}-2)^2\)
3 \(x-\ln x\)
4 \(x+e^x\)
Sets, Relation and Function

117057 Let \(x=(8 \sqrt{3}+13)^{13}\) and \(y=(7 \sqrt{2}+9)^9\). If [t] denotes the greatest integer \(\leq t\), then

1 \([x]\) is even but \([y]\) is odd
2 \([\mathrm{x}]+[\mathrm{y}]\) is even
3 \([x]\) and \([y]\) are both odd
4 \([x]\) is odd but \([y]\) is even
Sets, Relation and Function

117058 Let \(A=\left(x_1, x_2, x_3, \ldots . ., x_7\right), B=\left(y_1, y_2, y_3\right)\). The total number of functions \(f: \mathrm{A} \rightarrow \mathrm{B}\) that are onto and there are exactly three elements \(x\) in A such that \(f(x)=y_2\) is equal to

1 490
2 510
3 630
4 None of these
Sets, Relation and Function

117060 Which of the following function is injective map?

1 \(f(x)=x^2+2, x \in(-\infty, \infty)\)
2 \(f(x)=|x+2|, x \in[-2, \infty)\)
3 \(f(x)=(x-4)(x-5), x \in(-\infty, \infty)\)
4 \(f(\mathrm{x})=\frac{4 \mathrm{x}^2+3 \mathrm{x}-5}{4+3 \mathrm{x}-5 \mathrm{x}^2}, \mathrm{x} \in(-\infty, \infty)\)
Sets, Relation and Function

117062 The set of zeros of the function \(f(x)=0\) is nonempty, when \(f(x)\) equals

1 \(e^{-\mathrm{x}}+\mathrm{x}\)
2 \(|\mathrm{x}|+(\mathrm{x}-2)^2\)
3 \(x-\ln x\)
4 \(x+e^x\)