Types of Functions
Sets, Relation and Function

117051 If \(F: R \rightarrow R\) is defined by \(f(x)=2 x+|x|\), then \(\mathbf{f}(\mathbf{2 x})+\mathbf{f}(-\mathbf{x})-\mathbf{f}(\mathbf{x})\) is equal to

1 \(2 x\)
2 \(2|\mathrm{x}|\)
3 \(-2 x\)
4 \(-2|x|\)
Sets, Relation and Function

117053 If \(f:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty]\) be a function defined by \(y=\sin \left(\frac{x}{2}\right)\) then \(f\) is

1 Injective
2 surjective
3 bijective
4 None of these
Sets, Relation and Function

117054 Let \(f: R \rightarrow\) satisfy \(f(x) f(y)=f(x y)\) for all real number \(x\) and \(y\). If \(f(2)=4\), then \(f\left(\frac{1}{2}\right)=\)

1 0
2 \(\frac{1}{4}\)
3 \(\frac{1}{2}\)
4 1
5 2
Sets, Relation and Function

117055 If \(f(x)=a \log |\mathbf{x}|+b x^2+x\) has its extremun values at \(x=-1\) and \(x=2\), then

1 \(\mathrm{a}=2, \mathrm{~b}=-1\)
2 \(\mathrm{a}=2, \mathrm{~b}=-1 / 2\)
3 \(\mathrm{a}=-2 \mathrm{~b}=\frac{1}{2}\)
4 None of these
Sets, Relation and Function

117051 If \(F: R \rightarrow R\) is defined by \(f(x)=2 x+|x|\), then \(\mathbf{f}(\mathbf{2 x})+\mathbf{f}(-\mathbf{x})-\mathbf{f}(\mathbf{x})\) is equal to

1 \(2 x\)
2 \(2|\mathrm{x}|\)
3 \(-2 x\)
4 \(-2|x|\)
Sets, Relation and Function

117053 If \(f:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty]\) be a function defined by \(y=\sin \left(\frac{x}{2}\right)\) then \(f\) is

1 Injective
2 surjective
3 bijective
4 None of these
Sets, Relation and Function

117054 Let \(f: R \rightarrow\) satisfy \(f(x) f(y)=f(x y)\) for all real number \(x\) and \(y\). If \(f(2)=4\), then \(f\left(\frac{1}{2}\right)=\)

1 0
2 \(\frac{1}{4}\)
3 \(\frac{1}{2}\)
4 1
5 2
Sets, Relation and Function

117055 If \(f(x)=a \log |\mathbf{x}|+b x^2+x\) has its extremun values at \(x=-1\) and \(x=2\), then

1 \(\mathrm{a}=2, \mathrm{~b}=-1\)
2 \(\mathrm{a}=2, \mathrm{~b}=-1 / 2\)
3 \(\mathrm{a}=-2 \mathrm{~b}=\frac{1}{2}\)
4 None of these
Sets, Relation and Function

117051 If \(F: R \rightarrow R\) is defined by \(f(x)=2 x+|x|\), then \(\mathbf{f}(\mathbf{2 x})+\mathbf{f}(-\mathbf{x})-\mathbf{f}(\mathbf{x})\) is equal to

1 \(2 x\)
2 \(2|\mathrm{x}|\)
3 \(-2 x\)
4 \(-2|x|\)
Sets, Relation and Function

117053 If \(f:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty]\) be a function defined by \(y=\sin \left(\frac{x}{2}\right)\) then \(f\) is

1 Injective
2 surjective
3 bijective
4 None of these
Sets, Relation and Function

117054 Let \(f: R \rightarrow\) satisfy \(f(x) f(y)=f(x y)\) for all real number \(x\) and \(y\). If \(f(2)=4\), then \(f\left(\frac{1}{2}\right)=\)

1 0
2 \(\frac{1}{4}\)
3 \(\frac{1}{2}\)
4 1
5 2
Sets, Relation and Function

117055 If \(f(x)=a \log |\mathbf{x}|+b x^2+x\) has its extremun values at \(x=-1\) and \(x=2\), then

1 \(\mathrm{a}=2, \mathrm{~b}=-1\)
2 \(\mathrm{a}=2, \mathrm{~b}=-1 / 2\)
3 \(\mathrm{a}=-2 \mathrm{~b}=\frac{1}{2}\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

117051 If \(F: R \rightarrow R\) is defined by \(f(x)=2 x+|x|\), then \(\mathbf{f}(\mathbf{2 x})+\mathbf{f}(-\mathbf{x})-\mathbf{f}(\mathbf{x})\) is equal to

1 \(2 x\)
2 \(2|\mathrm{x}|\)
3 \(-2 x\)
4 \(-2|x|\)
Sets, Relation and Function

117053 If \(f:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty]\) be a function defined by \(y=\sin \left(\frac{x}{2}\right)\) then \(f\) is

1 Injective
2 surjective
3 bijective
4 None of these
Sets, Relation and Function

117054 Let \(f: R \rightarrow\) satisfy \(f(x) f(y)=f(x y)\) for all real number \(x\) and \(y\). If \(f(2)=4\), then \(f\left(\frac{1}{2}\right)=\)

1 0
2 \(\frac{1}{4}\)
3 \(\frac{1}{2}\)
4 1
5 2
Sets, Relation and Function

117055 If \(f(x)=a \log |\mathbf{x}|+b x^2+x\) has its extremun values at \(x=-1\) and \(x=2\), then

1 \(\mathrm{a}=2, \mathrm{~b}=-1\)
2 \(\mathrm{a}=2, \mathrm{~b}=-1 / 2\)
3 \(\mathrm{a}=-2 \mathrm{~b}=\frac{1}{2}\)
4 None of these