116984 If a function F is such that F(0)=2,F(1)=3, F(n+2)=2F(n)−F(n+1) for n≠0, then F(5) is equal to
D Given F(0)=2, F(1)=3F(n+2)=2F(n)−F(n+1)Putting, n=0F(0+2)=2F(0)−F(0+1)F(2)=2×2−3F(2)=1Put n=1F(3)=2 F(1)−F(2)F(3)=2×3−1 F(3)=5Put n=2F(2+2)=2F(2)−F(3)F(4)=2×1−5F(4)=−3Putn=3F(5)=2F(3)−F(4)=2×5−(−3)=10+3F(5)=13
116986 If f(x)=ax2+bx+c satisfies f(1)+2f(2)=0 and 2f(1)+f(2)=0, then 3a+b=
C We have equation,f(x)=ax2+bx+cf(1)+2f(2)=02f(1)+f(2)=0Nowf(1)=a+b+cf(2)=4a+2b+cf(2)−f(1)=3a+bNow,f(1)+2f(2)=0a+b+c+2(4a+2b+c)=02(a+b+c)+4a+2b+c=0Adding these equation,3(a+b+c)+3(4a+2b+c)=03[a+b+c+4a+2b+c]=03[5a+3b+2c]=0It can be written as(a+b+c)−2(a+b+c)+2(4a+2b+c)−(4a+2b+c) As −(a+b+c)+4a+2b+c=03a+b=0As −(a+b+c)+4a+2 b+c=03a+b=0
116987 Let f be a function defined by f(xy)=f(x)y for all positive real numbers x and y If f(30)=20, then f(40)=
B Given functionf(xy)=f(x)yPutx=1f(y)=f(1)yPuty=30f(30)=f(1)30f(1)=f(30)⋅30=20×30f(1)=600Put y=40 in equationf(40)=f(1)40f(40)=60040f(40)=15
116988 If f(x)=1x+22x−4+1x−22x−4 for x> 2 , then f(11) is equal to
:Given,f(x)=1x+22x−4+1x−22x−4Now find f(11)Putting x=11f(11)=111+22×11−4+111−22×11−4=111+222−4+111−222−4=111+218+111−218=19+2+62+19+2−62=1(3)2+(2)2+62+1(3)2+(2)2−62=1(2+3)2+1(3)2−(2)2=13+2+13−2=3−2+3+2(3+2)(3−2)=632−(2)2=69−2=67