C A function is even function if \(f(x)=f(-x)\) Let as consider- \(f(x) =x \cdot \frac{\left(a^x-1\right)}{\left(a^x+1\right)}\) \(\therefore \quad f(-x) =\frac{-x\left[a^{-x}-1\right]}{\left[a^{-x}+1\right]}\) \(= -x\left[\frac{1-a^x}{1+a^x}\right]=x \cdot\left[\frac{a^x-1}{a^x+1}\right]=f(x)\)
WB JEE-2011
Sets, Relation and Function
116967
If \(\left(a^4-2 a^2 b^2+b^4\right)^{x-1}=(a-b)^{2 x}(a+b)^{-2}, a>0 b\) \(>0\), then \(\mathrm{x}=\)
C A function is even function if \(f(x)=f(-x)\) Let as consider- \(f(x) =x \cdot \frac{\left(a^x-1\right)}{\left(a^x+1\right)}\) \(\therefore \quad f(-x) =\frac{-x\left[a^{-x}-1\right]}{\left[a^{-x}+1\right]}\) \(= -x\left[\frac{1-a^x}{1+a^x}\right]=x \cdot\left[\frac{a^x-1}{a^x+1}\right]=f(x)\)
WB JEE-2011
Sets, Relation and Function
116967
If \(\left(a^4-2 a^2 b^2+b^4\right)^{x-1}=(a-b)^{2 x}(a+b)^{-2}, a>0 b\) \(>0\), then \(\mathrm{x}=\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Sets, Relation and Function
116961
The even function of the following is
1 \(f(x)=\frac{a^x+a^{-x}}{a^x-a^{-x}}\)
2 \(f(x)=\frac{a^x+1}{a^x-1}\)
3 \(f(x)=x \cdot \frac{a^x-1}{a^x+1}\)
4 \(f(x)=\log _2\left(x+\sqrt{x^2+1}\right)\)
Explanation:
C A function is even function if \(f(x)=f(-x)\) Let as consider- \(f(x) =x \cdot \frac{\left(a^x-1\right)}{\left(a^x+1\right)}\) \(\therefore \quad f(-x) =\frac{-x\left[a^{-x}-1\right]}{\left[a^{-x}+1\right]}\) \(= -x\left[\frac{1-a^x}{1+a^x}\right]=x \cdot\left[\frac{a^x-1}{a^x+1}\right]=f(x)\)
WB JEE-2011
Sets, Relation and Function
116967
If \(\left(a^4-2 a^2 b^2+b^4\right)^{x-1}=(a-b)^{2 x}(a+b)^{-2}, a>0 b\) \(>0\), then \(\mathrm{x}=\)
C A function is even function if \(f(x)=f(-x)\) Let as consider- \(f(x) =x \cdot \frac{\left(a^x-1\right)}{\left(a^x+1\right)}\) \(\therefore \quad f(-x) =\frac{-x\left[a^{-x}-1\right]}{\left[a^{-x}+1\right]}\) \(= -x\left[\frac{1-a^x}{1+a^x}\right]=x \cdot\left[\frac{a^x-1}{a^x+1}\right]=f(x)\)
WB JEE-2011
Sets, Relation and Function
116967
If \(\left(a^4-2 a^2 b^2+b^4\right)^{x-1}=(a-b)^{2 x}(a+b)^{-2}, a>0 b\) \(>0\), then \(\mathrm{x}=\)