Properties of Functions and Graphs
Sets, Relation and Function

116957 If \(x>0\) and \(\log _4\left(x^3+x^2\right)-\log _4(x+1)=2\), then value of \(x\) is

1 4
2 64
3 8
4 2
Sets, Relation and Function

116958 The real value(s) of \(x\) which satisfy \((5+2 \sqrt{6})^{x^2-3}+(5-2 \sqrt{6})^{x^2-3}=10\) is/are

1 \(2,-\sqrt{2}\)
2 \(\pm 2, \pm \sqrt{2}\)
3 \(2, \sqrt{2}\)
4 \(-2,-\sqrt{2}\)
Sets, Relation and Function

116960 The value of \(\left(\frac{1}{\log _3 12}+\frac{1}{\log _4 12}\right)\) is

1 0
2 \(\frac{1}{2}\)
3 1
4 2
Sets, Relation and Function

116962 If \(\log _3 x+\log _3 y=2+\log _3 2\) and \(\log _3(x+y)=2\), then

1 \(x=1, y=8\)
2 \(x=8, y=1\)
3 \(x=3, y=6\)
4 \(x=9, y=3\)
Sets, Relation and Function

116963 If \(\log _7 2=\lambda\), then the value of \(\log _{49}(28)\) is

1 \((2 \lambda+1)\)
2 \((2 \lambda+3)\)
3 \(\frac{1}{2}(2 \lambda+1)\)
4 \(2(2 \lambda+1)\)
Sets, Relation and Function

116957 If \(x>0\) and \(\log _4\left(x^3+x^2\right)-\log _4(x+1)=2\), then value of \(x\) is

1 4
2 64
3 8
4 2
Sets, Relation and Function

116958 The real value(s) of \(x\) which satisfy \((5+2 \sqrt{6})^{x^2-3}+(5-2 \sqrt{6})^{x^2-3}=10\) is/are

1 \(2,-\sqrt{2}\)
2 \(\pm 2, \pm \sqrt{2}\)
3 \(2, \sqrt{2}\)
4 \(-2,-\sqrt{2}\)
Sets, Relation and Function

116960 The value of \(\left(\frac{1}{\log _3 12}+\frac{1}{\log _4 12}\right)\) is

1 0
2 \(\frac{1}{2}\)
3 1
4 2
Sets, Relation and Function

116962 If \(\log _3 x+\log _3 y=2+\log _3 2\) and \(\log _3(x+y)=2\), then

1 \(x=1, y=8\)
2 \(x=8, y=1\)
3 \(x=3, y=6\)
4 \(x=9, y=3\)
Sets, Relation and Function

116963 If \(\log _7 2=\lambda\), then the value of \(\log _{49}(28)\) is

1 \((2 \lambda+1)\)
2 \((2 \lambda+3)\)
3 \(\frac{1}{2}(2 \lambda+1)\)
4 \(2(2 \lambda+1)\)
Sets, Relation and Function

116957 If \(x>0\) and \(\log _4\left(x^3+x^2\right)-\log _4(x+1)=2\), then value of \(x\) is

1 4
2 64
3 8
4 2
Sets, Relation and Function

116958 The real value(s) of \(x\) which satisfy \((5+2 \sqrt{6})^{x^2-3}+(5-2 \sqrt{6})^{x^2-3}=10\) is/are

1 \(2,-\sqrt{2}\)
2 \(\pm 2, \pm \sqrt{2}\)
3 \(2, \sqrt{2}\)
4 \(-2,-\sqrt{2}\)
Sets, Relation and Function

116960 The value of \(\left(\frac{1}{\log _3 12}+\frac{1}{\log _4 12}\right)\) is

1 0
2 \(\frac{1}{2}\)
3 1
4 2
Sets, Relation and Function

116962 If \(\log _3 x+\log _3 y=2+\log _3 2\) and \(\log _3(x+y)=2\), then

1 \(x=1, y=8\)
2 \(x=8, y=1\)
3 \(x=3, y=6\)
4 \(x=9, y=3\)
Sets, Relation and Function

116963 If \(\log _7 2=\lambda\), then the value of \(\log _{49}(28)\) is

1 \((2 \lambda+1)\)
2 \((2 \lambda+3)\)
3 \(\frac{1}{2}(2 \lambda+1)\)
4 \(2(2 \lambda+1)\)
Sets, Relation and Function

116957 If \(x>0\) and \(\log _4\left(x^3+x^2\right)-\log _4(x+1)=2\), then value of \(x\) is

1 4
2 64
3 8
4 2
Sets, Relation and Function

116958 The real value(s) of \(x\) which satisfy \((5+2 \sqrt{6})^{x^2-3}+(5-2 \sqrt{6})^{x^2-3}=10\) is/are

1 \(2,-\sqrt{2}\)
2 \(\pm 2, \pm \sqrt{2}\)
3 \(2, \sqrt{2}\)
4 \(-2,-\sqrt{2}\)
Sets, Relation and Function

116960 The value of \(\left(\frac{1}{\log _3 12}+\frac{1}{\log _4 12}\right)\) is

1 0
2 \(\frac{1}{2}\)
3 1
4 2
Sets, Relation and Function

116962 If \(\log _3 x+\log _3 y=2+\log _3 2\) and \(\log _3(x+y)=2\), then

1 \(x=1, y=8\)
2 \(x=8, y=1\)
3 \(x=3, y=6\)
4 \(x=9, y=3\)
Sets, Relation and Function

116963 If \(\log _7 2=\lambda\), then the value of \(\log _{49}(28)\) is

1 \((2 \lambda+1)\)
2 \((2 \lambda+3)\)
3 \(\frac{1}{2}(2 \lambda+1)\)
4 \(2(2 \lambda+1)\)
Sets, Relation and Function

116957 If \(x>0\) and \(\log _4\left(x^3+x^2\right)-\log _4(x+1)=2\), then value of \(x\) is

1 4
2 64
3 8
4 2
Sets, Relation and Function

116958 The real value(s) of \(x\) which satisfy \((5+2 \sqrt{6})^{x^2-3}+(5-2 \sqrt{6})^{x^2-3}=10\) is/are

1 \(2,-\sqrt{2}\)
2 \(\pm 2, \pm \sqrt{2}\)
3 \(2, \sqrt{2}\)
4 \(-2,-\sqrt{2}\)
Sets, Relation and Function

116960 The value of \(\left(\frac{1}{\log _3 12}+\frac{1}{\log _4 12}\right)\) is

1 0
2 \(\frac{1}{2}\)
3 1
4 2
Sets, Relation and Function

116962 If \(\log _3 x+\log _3 y=2+\log _3 2\) and \(\log _3(x+y)=2\), then

1 \(x=1, y=8\)
2 \(x=8, y=1\)
3 \(x=3, y=6\)
4 \(x=9, y=3\)
Sets, Relation and Function

116963 If \(\log _7 2=\lambda\), then the value of \(\log _{49}(28)\) is

1 \((2 \lambda+1)\)
2 \((2 \lambda+3)\)
3 \(\frac{1}{2}(2 \lambda+1)\)
4 \(2(2 \lambda+1)\)