Properties of Functions and Graphs
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116944 If \(f: R \rightarrow R\) is defined as \(f(x)=\frac{3^x+3^{-x}}{2}\),
\(\forall \mathbf{x}, \in \mathbf{R}\) and it satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})+\mathbf{f}(\mathbf{x}-\mathbf{y})=\mathbf{a} \mathbf{f}(\mathbf{x})\) \(\mathbf{f}(\mathbf{y})\), then \(\mathbf{a}=\)

1 2
2 1
3 4
4 8
Sets, Relation and Function

116952 If \(x=2 \sqrt{2}+\sqrt{7}\), then \(x+\frac{1}{x}\) is equal to

1 \(2 \sqrt{2}\)
2 \(4 \sqrt{2}\)
3 8
4 \(\sqrt{7}\)
Sets, Relation and Function

116953 \(0.0001\lt \mathbf{n}\lt \mathbf{0 . 0 0 1}\), then

1 \(-4\lt \log \mathrm{n}\lt -3\)
2 \(-3\lt \log \mathrm{n}\lt -2\)
3 \(-2\lt \log \mathrm{n}\lt -1\)
4 \(-5\lt \log \mathrm{n}\lt -4\)
Sets, Relation and Function

116959 The value of \(\frac{\log _3 5 \times \log _{25} 27 \times \log _{49} 7}{\log _{81} 3}\) is

1 1
2 6
3 \(\frac{2}{3}\)
4 3
Sets, Relation and Function

116944 If \(f: R \rightarrow R\) is defined as \(f(x)=\frac{3^x+3^{-x}}{2}\),
\(\forall \mathbf{x}, \in \mathbf{R}\) and it satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})+\mathbf{f}(\mathbf{x}-\mathbf{y})=\mathbf{a} \mathbf{f}(\mathbf{x})\) \(\mathbf{f}(\mathbf{y})\), then \(\mathbf{a}=\)

1 2
2 1
3 4
4 8
Sets, Relation and Function

116952 If \(x=2 \sqrt{2}+\sqrt{7}\), then \(x+\frac{1}{x}\) is equal to

1 \(2 \sqrt{2}\)
2 \(4 \sqrt{2}\)
3 8
4 \(\sqrt{7}\)
Sets, Relation and Function

116953 \(0.0001\lt \mathbf{n}\lt \mathbf{0 . 0 0 1}\), then

1 \(-4\lt \log \mathrm{n}\lt -3\)
2 \(-3\lt \log \mathrm{n}\lt -2\)
3 \(-2\lt \log \mathrm{n}\lt -1\)
4 \(-5\lt \log \mathrm{n}\lt -4\)
Sets, Relation and Function

116959 The value of \(\frac{\log _3 5 \times \log _{25} 27 \times \log _{49} 7}{\log _{81} 3}\) is

1 1
2 6
3 \(\frac{2}{3}\)
4 3
Sets, Relation and Function

116944 If \(f: R \rightarrow R\) is defined as \(f(x)=\frac{3^x+3^{-x}}{2}\),
\(\forall \mathbf{x}, \in \mathbf{R}\) and it satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})+\mathbf{f}(\mathbf{x}-\mathbf{y})=\mathbf{a} \mathbf{f}(\mathbf{x})\) \(\mathbf{f}(\mathbf{y})\), then \(\mathbf{a}=\)

1 2
2 1
3 4
4 8
Sets, Relation and Function

116952 If \(x=2 \sqrt{2}+\sqrt{7}\), then \(x+\frac{1}{x}\) is equal to

1 \(2 \sqrt{2}\)
2 \(4 \sqrt{2}\)
3 8
4 \(\sqrt{7}\)
Sets, Relation and Function

116953 \(0.0001\lt \mathbf{n}\lt \mathbf{0 . 0 0 1}\), then

1 \(-4\lt \log \mathrm{n}\lt -3\)
2 \(-3\lt \log \mathrm{n}\lt -2\)
3 \(-2\lt \log \mathrm{n}\lt -1\)
4 \(-5\lt \log \mathrm{n}\lt -4\)
Sets, Relation and Function

116959 The value of \(\frac{\log _3 5 \times \log _{25} 27 \times \log _{49} 7}{\log _{81} 3}\) is

1 1
2 6
3 \(\frac{2}{3}\)
4 3
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116944 If \(f: R \rightarrow R\) is defined as \(f(x)=\frac{3^x+3^{-x}}{2}\),
\(\forall \mathbf{x}, \in \mathbf{R}\) and it satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})+\mathbf{f}(\mathbf{x}-\mathbf{y})=\mathbf{a} \mathbf{f}(\mathbf{x})\) \(\mathbf{f}(\mathbf{y})\), then \(\mathbf{a}=\)

1 2
2 1
3 4
4 8
Sets, Relation and Function

116952 If \(x=2 \sqrt{2}+\sqrt{7}\), then \(x+\frac{1}{x}\) is equal to

1 \(2 \sqrt{2}\)
2 \(4 \sqrt{2}\)
3 8
4 \(\sqrt{7}\)
Sets, Relation and Function

116953 \(0.0001\lt \mathbf{n}\lt \mathbf{0 . 0 0 1}\), then

1 \(-4\lt \log \mathrm{n}\lt -3\)
2 \(-3\lt \log \mathrm{n}\lt -2\)
3 \(-2\lt \log \mathrm{n}\lt -1\)
4 \(-5\lt \log \mathrm{n}\lt -4\)
Sets, Relation and Function

116959 The value of \(\frac{\log _3 5 \times \log _{25} 27 \times \log _{49} 7}{\log _{81} 3}\) is

1 1
2 6
3 \(\frac{2}{3}\)
4 3