116944
If \(f: R \rightarrow R\) is defined as \(f(x)=\frac{3^x+3^{-x}}{2}\),
\(\forall \mathbf{x}, \in \mathbf{R}\) and it satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})+\mathbf{f}(\mathbf{x}-\mathbf{y})=\mathbf{a} \mathbf{f}(\mathbf{x})\) \(\mathbf{f}(\mathbf{y})\), then \(\mathbf{a}=\)
116944
If \(f: R \rightarrow R\) is defined as \(f(x)=\frac{3^x+3^{-x}}{2}\),
\(\forall \mathbf{x}, \in \mathbf{R}\) and it satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})+\mathbf{f}(\mathbf{x}-\mathbf{y})=\mathbf{a} \mathbf{f}(\mathbf{x})\) \(\mathbf{f}(\mathbf{y})\), then \(\mathbf{a}=\)
116944
If \(f: R \rightarrow R\) is defined as \(f(x)=\frac{3^x+3^{-x}}{2}\),
\(\forall \mathbf{x}, \in \mathbf{R}\) and it satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})+\mathbf{f}(\mathbf{x}-\mathbf{y})=\mathbf{a} \mathbf{f}(\mathbf{x})\) \(\mathbf{f}(\mathbf{y})\), then \(\mathbf{a}=\)
116944
If \(f: R \rightarrow R\) is defined as \(f(x)=\frac{3^x+3^{-x}}{2}\),
\(\forall \mathbf{x}, \in \mathbf{R}\) and it satisfies \(\mathbf{f}(\mathbf{x}+\mathbf{y})+\mathbf{f}(\mathbf{x}-\mathbf{y})=\mathbf{a} \mathbf{f}(\mathbf{x})\) \(\mathbf{f}(\mathbf{y})\), then \(\mathbf{a}=\)