Properties of Functions and Graphs
Sets, Relation and Function

116936 If \(f\) is any function, then \(\frac{1}{2}[f(x)+f(-x)]\) is always :

1 odd
2 even
3 neither even nor odd
4 one-one
Sets, Relation and Function

116860 The graph of the function \(y=f(x)\) is symmetrical about the line \(\boldsymbol{x}=2\). Then,

1 \(f(x+2)=f(x-2)\)
2 \(f(2+x)=f(2-x)\)
3 \(f(x)=f(-x)\)
4 \(f(x)=-f(-x)\)
Sets, Relation and Function

116861 The number of solutions of \(\log _4(x-1)=\log _2(x-\)
3) is

1 3
2 1
3 2
4 0
Sets, Relation and Function

116862 If \(a\) and \(b\) are positive integers such that \(\left(a^2-b^2\right)\) is a prime number, then

1 \(a^2-b^2=a+b\)
2 \(\mathrm{a}^2-\mathrm{b}^2=\mathrm{a}-\mathrm{b}\)
3 \(a^2+b^2=a-b\)
4 \(a^2+b^2=a+b\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116936 If \(f\) is any function, then \(\frac{1}{2}[f(x)+f(-x)]\) is always :

1 odd
2 even
3 neither even nor odd
4 one-one
Sets, Relation and Function

116860 The graph of the function \(y=f(x)\) is symmetrical about the line \(\boldsymbol{x}=2\). Then,

1 \(f(x+2)=f(x-2)\)
2 \(f(2+x)=f(2-x)\)
3 \(f(x)=f(-x)\)
4 \(f(x)=-f(-x)\)
Sets, Relation and Function

116861 The number of solutions of \(\log _4(x-1)=\log _2(x-\)
3) is

1 3
2 1
3 2
4 0
Sets, Relation and Function

116862 If \(a\) and \(b\) are positive integers such that \(\left(a^2-b^2\right)\) is a prime number, then

1 \(a^2-b^2=a+b\)
2 \(\mathrm{a}^2-\mathrm{b}^2=\mathrm{a}-\mathrm{b}\)
3 \(a^2+b^2=a-b\)
4 \(a^2+b^2=a+b\)
Sets, Relation and Function

116936 If \(f\) is any function, then \(\frac{1}{2}[f(x)+f(-x)]\) is always :

1 odd
2 even
3 neither even nor odd
4 one-one
Sets, Relation and Function

116860 The graph of the function \(y=f(x)\) is symmetrical about the line \(\boldsymbol{x}=2\). Then,

1 \(f(x+2)=f(x-2)\)
2 \(f(2+x)=f(2-x)\)
3 \(f(x)=f(-x)\)
4 \(f(x)=-f(-x)\)
Sets, Relation and Function

116861 The number of solutions of \(\log _4(x-1)=\log _2(x-\)
3) is

1 3
2 1
3 2
4 0
Sets, Relation and Function

116862 If \(a\) and \(b\) are positive integers such that \(\left(a^2-b^2\right)\) is a prime number, then

1 \(a^2-b^2=a+b\)
2 \(\mathrm{a}^2-\mathrm{b}^2=\mathrm{a}-\mathrm{b}\)
3 \(a^2+b^2=a-b\)
4 \(a^2+b^2=a+b\)
Sets, Relation and Function

116936 If \(f\) is any function, then \(\frac{1}{2}[f(x)+f(-x)]\) is always :

1 odd
2 even
3 neither even nor odd
4 one-one
Sets, Relation and Function

116860 The graph of the function \(y=f(x)\) is symmetrical about the line \(\boldsymbol{x}=2\). Then,

1 \(f(x+2)=f(x-2)\)
2 \(f(2+x)=f(2-x)\)
3 \(f(x)=f(-x)\)
4 \(f(x)=-f(-x)\)
Sets, Relation and Function

116861 The number of solutions of \(\log _4(x-1)=\log _2(x-\)
3) is

1 3
2 1
3 2
4 0
Sets, Relation and Function

116862 If \(a\) and \(b\) are positive integers such that \(\left(a^2-b^2\right)\) is a prime number, then

1 \(a^2-b^2=a+b\)
2 \(\mathrm{a}^2-\mathrm{b}^2=\mathrm{a}-\mathrm{b}\)
3 \(a^2+b^2=a-b\)
4 \(a^2+b^2=a+b\)