Properties of Functions and Graphs
Sets, Relation and Function

116925 If \(x+\log _{10}\left(1+2^x\right)=x \log _{10} 5+\log _{10} 6\), then the value of \(x\) is

1 \(\frac{1}{2}\)
2 \(\frac{1}{3}\)
3 1
4 2
Sets, Relation and Function

116926 Consider the function \(f(x)=\cos ^2\). Then,

1 \(f\) is of period \(2 \pi\)
2 \(f\) is of period \(\sqrt{2 \pi}\)
3 \(\mathrm{f}\) is not periodic
4 \(\mathrm{f}\) is of period \(\pi\)
Sets, Relation and Function

116928 If \(\log _2 6+\frac{1}{2 x}=\log _2\left(2^{\frac{1}{x}}+8\right)\) then the values of \(x\) are

1 \(\frac{1}{4}, \frac{1}{3}\)
2 \(\frac{1}{4}, \frac{1}{2}\)
3 \(-\frac{1}{4}, \frac{1}{2}\)
4 \(\frac{1}{3},-\frac{1}{2}\)
Sets, Relation and Function

116929 Let \(f(x)=\sin x+\cos\) ax be periodic function.
Then,

1 a is any real number
2 a is any irrational number
3 a is rational number
4 \(a=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116925 If \(x+\log _{10}\left(1+2^x\right)=x \log _{10} 5+\log _{10} 6\), then the value of \(x\) is

1 \(\frac{1}{2}\)
2 \(\frac{1}{3}\)
3 1
4 2
Sets, Relation and Function

116926 Consider the function \(f(x)=\cos ^2\). Then,

1 \(f\) is of period \(2 \pi\)
2 \(f\) is of period \(\sqrt{2 \pi}\)
3 \(\mathrm{f}\) is not periodic
4 \(\mathrm{f}\) is of period \(\pi\)
Sets, Relation and Function

116928 If \(\log _2 6+\frac{1}{2 x}=\log _2\left(2^{\frac{1}{x}}+8\right)\) then the values of \(x\) are

1 \(\frac{1}{4}, \frac{1}{3}\)
2 \(\frac{1}{4}, \frac{1}{2}\)
3 \(-\frac{1}{4}, \frac{1}{2}\)
4 \(\frac{1}{3},-\frac{1}{2}\)
Sets, Relation and Function

116929 Let \(f(x)=\sin x+\cos\) ax be periodic function.
Then,

1 a is any real number
2 a is any irrational number
3 a is rational number
4 \(a=0\)
Sets, Relation and Function

116925 If \(x+\log _{10}\left(1+2^x\right)=x \log _{10} 5+\log _{10} 6\), then the value of \(x\) is

1 \(\frac{1}{2}\)
2 \(\frac{1}{3}\)
3 1
4 2
Sets, Relation and Function

116926 Consider the function \(f(x)=\cos ^2\). Then,

1 \(f\) is of period \(2 \pi\)
2 \(f\) is of period \(\sqrt{2 \pi}\)
3 \(\mathrm{f}\) is not periodic
4 \(\mathrm{f}\) is of period \(\pi\)
Sets, Relation and Function

116928 If \(\log _2 6+\frac{1}{2 x}=\log _2\left(2^{\frac{1}{x}}+8\right)\) then the values of \(x\) are

1 \(\frac{1}{4}, \frac{1}{3}\)
2 \(\frac{1}{4}, \frac{1}{2}\)
3 \(-\frac{1}{4}, \frac{1}{2}\)
4 \(\frac{1}{3},-\frac{1}{2}\)
Sets, Relation and Function

116929 Let \(f(x)=\sin x+\cos\) ax be periodic function.
Then,

1 a is any real number
2 a is any irrational number
3 a is rational number
4 \(a=0\)
Sets, Relation and Function

116925 If \(x+\log _{10}\left(1+2^x\right)=x \log _{10} 5+\log _{10} 6\), then the value of \(x\) is

1 \(\frac{1}{2}\)
2 \(\frac{1}{3}\)
3 1
4 2
Sets, Relation and Function

116926 Consider the function \(f(x)=\cos ^2\). Then,

1 \(f\) is of period \(2 \pi\)
2 \(f\) is of period \(\sqrt{2 \pi}\)
3 \(\mathrm{f}\) is not periodic
4 \(\mathrm{f}\) is of period \(\pi\)
Sets, Relation and Function

116928 If \(\log _2 6+\frac{1}{2 x}=\log _2\left(2^{\frac{1}{x}}+8\right)\) then the values of \(x\) are

1 \(\frac{1}{4}, \frac{1}{3}\)
2 \(\frac{1}{4}, \frac{1}{2}\)
3 \(-\frac{1}{4}, \frac{1}{2}\)
4 \(\frac{1}{3},-\frac{1}{2}\)
Sets, Relation and Function

116929 Let \(f(x)=\sin x+\cos\) ax be periodic function.
Then,

1 a is any real number
2 a is any irrational number
3 a is rational number
4 \(a=0\)