Properties of Functions and Graphs
Sets, Relation and Function

116919 The value of \([\sin x]+[1+\sin x]+[2+\sin x]\) in \(x \in\left[\pi, \frac{3 \pi}{2}\right]\) can be ([.] is the greatest integer function) can be

1 0
2 1
3 2
4 3
Sets, Relation and Function

116920 The function \(f(x)=2 \cos 5 x+3 \sin \sqrt{5} x\) is

1 a periodic function with period \(2 \pi\)
2 a periodic function with period \(\frac{2 \pi}{5}\)
3 a periodic function with period \(\frac{2 \pi}{\sqrt{5}}\)
4 not a periodic function
Sets, Relation and Function

116921 If \(a, b, c\) are positive real numbers, then
\(\frac{1}{\log _{a b} a b c}+\frac{1}{\log _{b c} a b c}+\frac{1}{\log _{c a} a b c}=\)

1 0
2 1
3 2
4 3
Sets, Relation and Function

116922 The number of functions \(f:\{1,2,3,4\} \rightarrow\{a \in\) \(\mathrm{Z}:|\mathrm{a}| \leq 8\}\) satisfying \(\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\) \(\{1,2,3\}\) is

1 2
2 1
3 4
4 3
Sets, Relation and Function

116924 If the periods of the functions \(\sin (a x+b)\) and \(\tan (c x+d)\) are respectively \(\frac{4}{7}\) and \(\frac{2}{5}\), then
\(\boldsymbol{\operatorname { s i n }}(|\mathbf{a}|+|\mathbf{c}|)+\cos (|\mathbf{a}|-|\mathbf{c}|)=\)

1 -1
2 0
3 1
4 2
Sets, Relation and Function

116919 The value of \([\sin x]+[1+\sin x]+[2+\sin x]\) in \(x \in\left[\pi, \frac{3 \pi}{2}\right]\) can be ([.] is the greatest integer function) can be

1 0
2 1
3 2
4 3
Sets, Relation and Function

116920 The function \(f(x)=2 \cos 5 x+3 \sin \sqrt{5} x\) is

1 a periodic function with period \(2 \pi\)
2 a periodic function with period \(\frac{2 \pi}{5}\)
3 a periodic function with period \(\frac{2 \pi}{\sqrt{5}}\)
4 not a periodic function
Sets, Relation and Function

116921 If \(a, b, c\) are positive real numbers, then
\(\frac{1}{\log _{a b} a b c}+\frac{1}{\log _{b c} a b c}+\frac{1}{\log _{c a} a b c}=\)

1 0
2 1
3 2
4 3
Sets, Relation and Function

116922 The number of functions \(f:\{1,2,3,4\} \rightarrow\{a \in\) \(\mathrm{Z}:|\mathrm{a}| \leq 8\}\) satisfying \(\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\) \(\{1,2,3\}\) is

1 2
2 1
3 4
4 3
Sets, Relation and Function

116924 If the periods of the functions \(\sin (a x+b)\) and \(\tan (c x+d)\) are respectively \(\frac{4}{7}\) and \(\frac{2}{5}\), then
\(\boldsymbol{\operatorname { s i n }}(|\mathbf{a}|+|\mathbf{c}|)+\cos (|\mathbf{a}|-|\mathbf{c}|)=\)

1 -1
2 0
3 1
4 2
Sets, Relation and Function

116919 The value of \([\sin x]+[1+\sin x]+[2+\sin x]\) in \(x \in\left[\pi, \frac{3 \pi}{2}\right]\) can be ([.] is the greatest integer function) can be

1 0
2 1
3 2
4 3
Sets, Relation and Function

116920 The function \(f(x)=2 \cos 5 x+3 \sin \sqrt{5} x\) is

1 a periodic function with period \(2 \pi\)
2 a periodic function with period \(\frac{2 \pi}{5}\)
3 a periodic function with period \(\frac{2 \pi}{\sqrt{5}}\)
4 not a periodic function
Sets, Relation and Function

116921 If \(a, b, c\) are positive real numbers, then
\(\frac{1}{\log _{a b} a b c}+\frac{1}{\log _{b c} a b c}+\frac{1}{\log _{c a} a b c}=\)

1 0
2 1
3 2
4 3
Sets, Relation and Function

116922 The number of functions \(f:\{1,2,3,4\} \rightarrow\{a \in\) \(\mathrm{Z}:|\mathrm{a}| \leq 8\}\) satisfying \(\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\) \(\{1,2,3\}\) is

1 2
2 1
3 4
4 3
Sets, Relation and Function

116924 If the periods of the functions \(\sin (a x+b)\) and \(\tan (c x+d)\) are respectively \(\frac{4}{7}\) and \(\frac{2}{5}\), then
\(\boldsymbol{\operatorname { s i n }}(|\mathbf{a}|+|\mathbf{c}|)+\cos (|\mathbf{a}|-|\mathbf{c}|)=\)

1 -1
2 0
3 1
4 2
Sets, Relation and Function

116919 The value of \([\sin x]+[1+\sin x]+[2+\sin x]\) in \(x \in\left[\pi, \frac{3 \pi}{2}\right]\) can be ([.] is the greatest integer function) can be

1 0
2 1
3 2
4 3
Sets, Relation and Function

116920 The function \(f(x)=2 \cos 5 x+3 \sin \sqrt{5} x\) is

1 a periodic function with period \(2 \pi\)
2 a periodic function with period \(\frac{2 \pi}{5}\)
3 a periodic function with period \(\frac{2 \pi}{\sqrt{5}}\)
4 not a periodic function
Sets, Relation and Function

116921 If \(a, b, c\) are positive real numbers, then
\(\frac{1}{\log _{a b} a b c}+\frac{1}{\log _{b c} a b c}+\frac{1}{\log _{c a} a b c}=\)

1 0
2 1
3 2
4 3
Sets, Relation and Function

116922 The number of functions \(f:\{1,2,3,4\} \rightarrow\{a \in\) \(\mathrm{Z}:|\mathrm{a}| \leq 8\}\) satisfying \(\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\) \(\{1,2,3\}\) is

1 2
2 1
3 4
4 3
Sets, Relation and Function

116924 If the periods of the functions \(\sin (a x+b)\) and \(\tan (c x+d)\) are respectively \(\frac{4}{7}\) and \(\frac{2}{5}\), then
\(\boldsymbol{\operatorname { s i n }}(|\mathbf{a}|+|\mathbf{c}|)+\cos (|\mathbf{a}|-|\mathbf{c}|)=\)

1 -1
2 0
3 1
4 2
Sets, Relation and Function

116919 The value of \([\sin x]+[1+\sin x]+[2+\sin x]\) in \(x \in\left[\pi, \frac{3 \pi}{2}\right]\) can be ([.] is the greatest integer function) can be

1 0
2 1
3 2
4 3
Sets, Relation and Function

116920 The function \(f(x)=2 \cos 5 x+3 \sin \sqrt{5} x\) is

1 a periodic function with period \(2 \pi\)
2 a periodic function with period \(\frac{2 \pi}{5}\)
3 a periodic function with period \(\frac{2 \pi}{\sqrt{5}}\)
4 not a periodic function
Sets, Relation and Function

116921 If \(a, b, c\) are positive real numbers, then
\(\frac{1}{\log _{a b} a b c}+\frac{1}{\log _{b c} a b c}+\frac{1}{\log _{c a} a b c}=\)

1 0
2 1
3 2
4 3
Sets, Relation and Function

116922 The number of functions \(f:\{1,2,3,4\} \rightarrow\{a \in\) \(\mathrm{Z}:|\mathrm{a}| \leq 8\}\) satisfying \(\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\) \(\{1,2,3\}\) is

1 2
2 1
3 4
4 3
Sets, Relation and Function

116924 If the periods of the functions \(\sin (a x+b)\) and \(\tan (c x+d)\) are respectively \(\frac{4}{7}\) and \(\frac{2}{5}\), then
\(\boldsymbol{\operatorname { s i n }}(|\mathbf{a}|+|\mathbf{c}|)+\cos (|\mathbf{a}|-|\mathbf{c}|)=\)

1 -1
2 0
3 1
4 2