116907 If f(x)=2x2, find f(3.8)−f(4)3.8−4
D Given, f(x)=2x2Then find f(3.8)−f(4)(3.8−4)= ?So, f(3.8)−f(4)3.8−4=2×(3.8)2−42×23.8−4=2[(3.8)2−42](3.8−4)=−2[42−(3.8)2]−(4−3.8)=2(4−3.8)(4+3.8)(4−3.8)=2×7.8=15.6
116975 If y=3x−1+3−x−1 (x real), then the least value of y is
C Given that,y=3x−1+3−x−1Now we know that- A.M ≥G⋅M3x−1+3−x−12≥(3x−1⋅3−x−1)123x−1+3−x−1≥2(3x−1⋅3−x−1)123x−1+3−x−1≥23
117024 If p and q are positive real numbers such that p2+q2=1, then the maximum value of (p+q) is
D Given,p2+q2=1Applying AM≥GM inequalityp2+q22≥p2q2p2+q2≥2pq12≥pqpq≤12Now we know that -(p+q)2=p2+q2=pq(p+q)2=1+2pq(p+q)2≤1+1(p+q)≤2Hence maximum value ofp+q=2
116859 If p=1log3π+1log4π+1, then
B Given, p=1log3π+1log4π+1p=logπ3+logπ4+1p=logπ(3×4)+1p=logπ(12)+1We know that -Then,12>(π2)=(3.14)2=9.859612>π2logπ12>logππ2logπ12>2So, p>3
116906 If f:R→R, such that f(x)=ex+e−xex−e−x, then f is
A Given,f(x)=ex+e−xex−e−xf(x)=ex+1exex−1exf(x)=e2x+1e2x−1And f(−x)=e−x+exe−x−exf(−x)=1ex+ex1ex−exf(−x)=1+e2x1−e2xf(−x)=−(e2x+1e2x−1)f(−x)=−f(x)[ From equation (i)]∴f(x) is odd function