Properties of Functions and Graphs
Sets, Relation and Function

116885 Let \(f: N \rightarrow R\) be a function such that \(f(x+y)=\) \(2 f(x) f(y)\) for natural numbers \(x\) and \(y\). If \(f(1)\) \(=2\), then the value of \(\alpha\) for which
\(\sum_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)\)
holds, is

1 2
2 3
3 4
4 6
Sets, Relation and Function

116886 The remainder when \(3^{2022}\) is divided by 5 is

1 1
2 2
3 3
4 4
Sets, Relation and Function

116887 Let \(f(x)=a x^2+b x+c\) be such that \(f(1)=3, f(-\) 2) \(=\lambda\) and \(f(3)=4\). If \(f(0)+f(1)+f(-2)+f(3)=\) 14 then \(\lambda\) is equal to

1 -4
2 \(\frac{13}{2}\)
3 \(\frac{23}{2}\)
4 4
Sets, Relation and Function

116888 If \(x^2+y^2+z^2 \neq 0, x=c y+b z, y=a z+c x\) and \(z=\) \(b x+a y\), then \(a^2+b^2+c^2+2 a b c\) is equal to

1 1
2 2
3 \(a+b+c\)
4 \(a b+b c+c a\)
Sets, Relation and Function

116885 Let \(f: N \rightarrow R\) be a function such that \(f(x+y)=\) \(2 f(x) f(y)\) for natural numbers \(x\) and \(y\). If \(f(1)\) \(=2\), then the value of \(\alpha\) for which
\(\sum_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)\)
holds, is

1 2
2 3
3 4
4 6
Sets, Relation and Function

116886 The remainder when \(3^{2022}\) is divided by 5 is

1 1
2 2
3 3
4 4
Sets, Relation and Function

116887 Let \(f(x)=a x^2+b x+c\) be such that \(f(1)=3, f(-\) 2) \(=\lambda\) and \(f(3)=4\). If \(f(0)+f(1)+f(-2)+f(3)=\) 14 then \(\lambda\) is equal to

1 -4
2 \(\frac{13}{2}\)
3 \(\frac{23}{2}\)
4 4
Sets, Relation and Function

116888 If \(x^2+y^2+z^2 \neq 0, x=c y+b z, y=a z+c x\) and \(z=\) \(b x+a y\), then \(a^2+b^2+c^2+2 a b c\) is equal to

1 1
2 2
3 \(a+b+c\)
4 \(a b+b c+c a\)
Sets, Relation and Function

116885 Let \(f: N \rightarrow R\) be a function such that \(f(x+y)=\) \(2 f(x) f(y)\) for natural numbers \(x\) and \(y\). If \(f(1)\) \(=2\), then the value of \(\alpha\) for which
\(\sum_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)\)
holds, is

1 2
2 3
3 4
4 6
Sets, Relation and Function

116886 The remainder when \(3^{2022}\) is divided by 5 is

1 1
2 2
3 3
4 4
Sets, Relation and Function

116887 Let \(f(x)=a x^2+b x+c\) be such that \(f(1)=3, f(-\) 2) \(=\lambda\) and \(f(3)=4\). If \(f(0)+f(1)+f(-2)+f(3)=\) 14 then \(\lambda\) is equal to

1 -4
2 \(\frac{13}{2}\)
3 \(\frac{23}{2}\)
4 4
Sets, Relation and Function

116888 If \(x^2+y^2+z^2 \neq 0, x=c y+b z, y=a z+c x\) and \(z=\) \(b x+a y\), then \(a^2+b^2+c^2+2 a b c\) is equal to

1 1
2 2
3 \(a+b+c\)
4 \(a b+b c+c a\)
Sets, Relation and Function

116885 Let \(f: N \rightarrow R\) be a function such that \(f(x+y)=\) \(2 f(x) f(y)\) for natural numbers \(x\) and \(y\). If \(f(1)\) \(=2\), then the value of \(\alpha\) for which
\(\sum_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)\)
holds, is

1 2
2 3
3 4
4 6
Sets, Relation and Function

116886 The remainder when \(3^{2022}\) is divided by 5 is

1 1
2 2
3 3
4 4
Sets, Relation and Function

116887 Let \(f(x)=a x^2+b x+c\) be such that \(f(1)=3, f(-\) 2) \(=\lambda\) and \(f(3)=4\). If \(f(0)+f(1)+f(-2)+f(3)=\) 14 then \(\lambda\) is equal to

1 -4
2 \(\frac{13}{2}\)
3 \(\frac{23}{2}\)
4 4
Sets, Relation and Function

116888 If \(x^2+y^2+z^2 \neq 0, x=c y+b z, y=a z+c x\) and \(z=\) \(b x+a y\), then \(a^2+b^2+c^2+2 a b c\) is equal to

1 1
2 2
3 \(a+b+c\)
4 \(a b+b c+c a\)