Properties of Functions and Graphs
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116858 The value of \(\left[\left(\log _b a\right)\left(\log _c b\right)\left(\log _a c\right)\right]\) is

1 abc
2 \(\log a b c\)
3 0
4 1
Sets, Relation and Function

116850 If \(\mathrm{e}^x=y+\sqrt{1+y^2}\) then the value of \(y\) is

1 \(\frac{1}{2\left(e^x+e^{-x}\right)}\)
2 \(\frac{1}{2\left(e^x-e^{-x}\right)}\)
3 \(e^x-e^{x / 2}\)
4 none of these
Sets, Relation and Function

116851 If \(f(x)=\frac{x}{x-1}, f(3 x)\) in terms of \(f(x)\) is

1 \(\frac{3 f(x)}{3 f(x)-1}\)
2 \(\frac{3 f(x)}{3 f(x)-3}\)
3 \(\frac{3 \mathrm{f}(\mathrm{x})}{2 \mathrm{f}(\mathrm{x})+1}\)
4 \(3 \mathrm{f}(\mathrm{x})-1\)
Sets, Relation and Function

116852 for \(f(x)=[x]\), where \([x]\) is the greatest integer function, which of the following is true, for every \(x \in R\).

1 \([\mathrm{x}]+1=\mathrm{x}\)
2 \([x]+1>x\)
3 \([x]+1 \leq x\)
4 \([\mathrm{x}]+1\lt \mathrm{x}\)
Sets, Relation and Function

116858 The value of \(\left[\left(\log _b a\right)\left(\log _c b\right)\left(\log _a c\right)\right]\) is

1 abc
2 \(\log a b c\)
3 0
4 1
Sets, Relation and Function

116850 If \(\mathrm{e}^x=y+\sqrt{1+y^2}\) then the value of \(y\) is

1 \(\frac{1}{2\left(e^x+e^{-x}\right)}\)
2 \(\frac{1}{2\left(e^x-e^{-x}\right)}\)
3 \(e^x-e^{x / 2}\)
4 none of these
Sets, Relation and Function

116851 If \(f(x)=\frac{x}{x-1}, f(3 x)\) in terms of \(f(x)\) is

1 \(\frac{3 f(x)}{3 f(x)-1}\)
2 \(\frac{3 f(x)}{3 f(x)-3}\)
3 \(\frac{3 \mathrm{f}(\mathrm{x})}{2 \mathrm{f}(\mathrm{x})+1}\)
4 \(3 \mathrm{f}(\mathrm{x})-1\)
Sets, Relation and Function

116852 for \(f(x)=[x]\), where \([x]\) is the greatest integer function, which of the following is true, for every \(x \in R\).

1 \([\mathrm{x}]+1=\mathrm{x}\)
2 \([x]+1>x\)
3 \([x]+1 \leq x\)
4 \([\mathrm{x}]+1\lt \mathrm{x}\)
Sets, Relation and Function

116858 The value of \(\left[\left(\log _b a\right)\left(\log _c b\right)\left(\log _a c\right)\right]\) is

1 abc
2 \(\log a b c\)
3 0
4 1
Sets, Relation and Function

116850 If \(\mathrm{e}^x=y+\sqrt{1+y^2}\) then the value of \(y\) is

1 \(\frac{1}{2\left(e^x+e^{-x}\right)}\)
2 \(\frac{1}{2\left(e^x-e^{-x}\right)}\)
3 \(e^x-e^{x / 2}\)
4 none of these
Sets, Relation and Function

116851 If \(f(x)=\frac{x}{x-1}, f(3 x)\) in terms of \(f(x)\) is

1 \(\frac{3 f(x)}{3 f(x)-1}\)
2 \(\frac{3 f(x)}{3 f(x)-3}\)
3 \(\frac{3 \mathrm{f}(\mathrm{x})}{2 \mathrm{f}(\mathrm{x})+1}\)
4 \(3 \mathrm{f}(\mathrm{x})-1\)
Sets, Relation and Function

116852 for \(f(x)=[x]\), where \([x]\) is the greatest integer function, which of the following is true, for every \(x \in R\).

1 \([\mathrm{x}]+1=\mathrm{x}\)
2 \([x]+1>x\)
3 \([x]+1 \leq x\)
4 \([\mathrm{x}]+1\lt \mathrm{x}\)
Sets, Relation and Function

116858 The value of \(\left[\left(\log _b a\right)\left(\log _c b\right)\left(\log _a c\right)\right]\) is

1 abc
2 \(\log a b c\)
3 0
4 1
Sets, Relation and Function

116850 If \(\mathrm{e}^x=y+\sqrt{1+y^2}\) then the value of \(y\) is

1 \(\frac{1}{2\left(e^x+e^{-x}\right)}\)
2 \(\frac{1}{2\left(e^x-e^{-x}\right)}\)
3 \(e^x-e^{x / 2}\)
4 none of these
Sets, Relation and Function

116851 If \(f(x)=\frac{x}{x-1}, f(3 x)\) in terms of \(f(x)\) is

1 \(\frac{3 f(x)}{3 f(x)-1}\)
2 \(\frac{3 f(x)}{3 f(x)-3}\)
3 \(\frac{3 \mathrm{f}(\mathrm{x})}{2 \mathrm{f}(\mathrm{x})+1}\)
4 \(3 \mathrm{f}(\mathrm{x})-1\)
Sets, Relation and Function

116852 for \(f(x)=[x]\), where \([x]\) is the greatest integer function, which of the following is true, for every \(x \in R\).

1 \([\mathrm{x}]+1=\mathrm{x}\)
2 \([x]+1>x\)
3 \([x]+1 \leq x\)
4 \([\mathrm{x}]+1\lt \mathrm{x}\)