Properties of Functions and Graphs
Sets, Relation and Function

116984 If a function \(F\) is such that \(F(0)=2, F(1)=3\), \(F(n+2)=2 F(n)-F(n+1)\) for \(n \neq 0\), then \(F(5)\) is equal to

1 -7
2 -3
3 7
4 13
Sets, Relation and Function

116986 If \(f(x)=a x^2+b x+c\) satisfies \(f(1)+2 f(2)=0\) and \(\mathbf{2 f}(\mathbf{1})+\mathbf{f}(\mathbf{2})=\mathbf{0}\), then \(3 \mathbf{a}+\mathbf{b}=\)

1 2
2 -1
3 0
4 1
Sets, Relation and Function

116987 Let \(f\) be a function defined by \(f(x y)=\frac{f(x)}{y}\) for all positive real numbers \(x\) and \(y\) If \(f(30)=20\), then \(\mathbf{f}(\mathbf{4 0})=\)

1 10
2 15
3 25
4 17
Sets, Relation and Function

116988 If \(f(x)=\frac{1}{\sqrt{x+2 \sqrt{2 x-4}}}+\frac{1}{\sqrt{x-2 \sqrt{2 x-4}}}\) for \(x>\) 2 , then \(f(11)\) is equal to

1 \(\frac{7}{6}\)
2 \(\frac{5}{6}\)
3 \(\frac{6}{7}\)
4 \(\frac{5}{7}\)
Sets, Relation and Function

116984 If a function \(F\) is such that \(F(0)=2, F(1)=3\), \(F(n+2)=2 F(n)-F(n+1)\) for \(n \neq 0\), then \(F(5)\) is equal to

1 -7
2 -3
3 7
4 13
Sets, Relation and Function

116986 If \(f(x)=a x^2+b x+c\) satisfies \(f(1)+2 f(2)=0\) and \(\mathbf{2 f}(\mathbf{1})+\mathbf{f}(\mathbf{2})=\mathbf{0}\), then \(3 \mathbf{a}+\mathbf{b}=\)

1 2
2 -1
3 0
4 1
Sets, Relation and Function

116987 Let \(f\) be a function defined by \(f(x y)=\frac{f(x)}{y}\) for all positive real numbers \(x\) and \(y\) If \(f(30)=20\), then \(\mathbf{f}(\mathbf{4 0})=\)

1 10
2 15
3 25
4 17
Sets, Relation and Function

116988 If \(f(x)=\frac{1}{\sqrt{x+2 \sqrt{2 x-4}}}+\frac{1}{\sqrt{x-2 \sqrt{2 x-4}}}\) for \(x>\) 2 , then \(f(11)\) is equal to

1 \(\frac{7}{6}\)
2 \(\frac{5}{6}\)
3 \(\frac{6}{7}\)
4 \(\frac{5}{7}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116984 If a function \(F\) is such that \(F(0)=2, F(1)=3\), \(F(n+2)=2 F(n)-F(n+1)\) for \(n \neq 0\), then \(F(5)\) is equal to

1 -7
2 -3
3 7
4 13
Sets, Relation and Function

116986 If \(f(x)=a x^2+b x+c\) satisfies \(f(1)+2 f(2)=0\) and \(\mathbf{2 f}(\mathbf{1})+\mathbf{f}(\mathbf{2})=\mathbf{0}\), then \(3 \mathbf{a}+\mathbf{b}=\)

1 2
2 -1
3 0
4 1
Sets, Relation and Function

116987 Let \(f\) be a function defined by \(f(x y)=\frac{f(x)}{y}\) for all positive real numbers \(x\) and \(y\) If \(f(30)=20\), then \(\mathbf{f}(\mathbf{4 0})=\)

1 10
2 15
3 25
4 17
Sets, Relation and Function

116988 If \(f(x)=\frac{1}{\sqrt{x+2 \sqrt{2 x-4}}}+\frac{1}{\sqrt{x-2 \sqrt{2 x-4}}}\) for \(x>\) 2 , then \(f(11)\) is equal to

1 \(\frac{7}{6}\)
2 \(\frac{5}{6}\)
3 \(\frac{6}{7}\)
4 \(\frac{5}{7}\)
Sets, Relation and Function

116984 If a function \(F\) is such that \(F(0)=2, F(1)=3\), \(F(n+2)=2 F(n)-F(n+1)\) for \(n \neq 0\), then \(F(5)\) is equal to

1 -7
2 -3
3 7
4 13
Sets, Relation and Function

116986 If \(f(x)=a x^2+b x+c\) satisfies \(f(1)+2 f(2)=0\) and \(\mathbf{2 f}(\mathbf{1})+\mathbf{f}(\mathbf{2})=\mathbf{0}\), then \(3 \mathbf{a}+\mathbf{b}=\)

1 2
2 -1
3 0
4 1
Sets, Relation and Function

116987 Let \(f\) be a function defined by \(f(x y)=\frac{f(x)}{y}\) for all positive real numbers \(x\) and \(y\) If \(f(30)=20\), then \(\mathbf{f}(\mathbf{4 0})=\)

1 10
2 15
3 25
4 17
Sets, Relation and Function

116988 If \(f(x)=\frac{1}{\sqrt{x+2 \sqrt{2 x-4}}}+\frac{1}{\sqrt{x-2 \sqrt{2 x-4}}}\) for \(x>\) 2 , then \(f(11)\) is equal to

1 \(\frac{7}{6}\)
2 \(\frac{5}{6}\)
3 \(\frac{6}{7}\)
4 \(\frac{5}{7}\)