Properties of Functions and Graphs
Sets, Relation and Function

116937 Let \(p(x)=a x^2+b x, q(x)=l x^2+\mathbf{m x}+\mathbf{n}\), with \(p\)

1 0
2 5
3 6
4 9
Sets, Relation and Function

116938 \(f(x)\) is real valued function such that \(2 f(x)+\) \(3 f(-x)=15-4 x\) for all \(x \in R\). Then \(f(2)=\)

1 -15
2 22
3 11
4 0
Sets, Relation and Function

116939 Consider the real valued function \(h\) : \(\{0,1,2 \ldots \ldots 100\} \rightarrow R\) such that \(h(0)=5\), h \((100)=20\) and satisfying \(h(p)=\frac{1}{2}\{h(p+1)+\) \(h(p-1)\}\) for every \(p=1,2 \ldots . .99\). Then the value of \(h\) (1) is

1 5.15
2 5.5
3 6
4 6.15
Sets, Relation and Function

116940 If \(f(x)=\frac{2 x-3}{(x-2)(x-3)}\) is a valued function then the value that \(f(x)\) does not take is

1 -10
2 2
3 1
4 -2
Sets, Relation and Function

116941 Match the functions of List-I with their nature in List-II and choose the correct option.
|List - I|List - II|
|
|A) \(\boldsymbol{f}: \mathrm{R} \rightarrow \mathrm{R}\) defined by \(f(x)=\cos (112 x-37)\) |I) Injection but not surjection|
|B) \(f: \mathrm{A} \rightarrow \mathrm{B}\) defined by \(\mathbf{f}(\mathbf{x})=\mathbf{x}\mathbf{x}\) when \(A=[-2,2] \& B=[-4,4]\)|II) Surjection but not injection
|C) \(f: R \rightarrow R\) defined by \(f(x)=(x-2)(x-3)(x-5)\) |III) Bijection|
|D) \(f: \mathrm{N} \rightarrow \mathrm{N}\) defined by \(\mathbf{f}(\mathbf{n})=\mathbf{n}+\mathbf{1}\)|IV) Neither injection nor surjection |
| | V) Compositefunction|
The correct match is

1 A - II, B - II, C - III
2 A - IV, B - I, C - II
3 A - IV, B - III, C - II
4 A - IV, B - III, C - II
Sets, Relation and Function

116937 Let \(p(x)=a x^2+b x, q(x)=l x^2+\mathbf{m x}+\mathbf{n}\), with \(p\)

1 0
2 5
3 6
4 9
Sets, Relation and Function

116938 \(f(x)\) is real valued function such that \(2 f(x)+\) \(3 f(-x)=15-4 x\) for all \(x \in R\). Then \(f(2)=\)

1 -15
2 22
3 11
4 0
Sets, Relation and Function

116939 Consider the real valued function \(h\) : \(\{0,1,2 \ldots \ldots 100\} \rightarrow R\) such that \(h(0)=5\), h \((100)=20\) and satisfying \(h(p)=\frac{1}{2}\{h(p+1)+\) \(h(p-1)\}\) for every \(p=1,2 \ldots . .99\). Then the value of \(h\) (1) is

1 5.15
2 5.5
3 6
4 6.15
Sets, Relation and Function

116940 If \(f(x)=\frac{2 x-3}{(x-2)(x-3)}\) is a valued function then the value that \(f(x)\) does not take is

1 -10
2 2
3 1
4 -2
Sets, Relation and Function

116941 Match the functions of List-I with their nature in List-II and choose the correct option.
|List - I|List - II|
|
|A) \(\boldsymbol{f}: \mathrm{R} \rightarrow \mathrm{R}\) defined by \(f(x)=\cos (112 x-37)\) |I) Injection but not surjection|
|B) \(f: \mathrm{A} \rightarrow \mathrm{B}\) defined by \(\mathbf{f}(\mathbf{x})=\mathbf{x}\mathbf{x}\) when \(A=[-2,2] \& B=[-4,4]\)|II) Surjection but not injection
|C) \(f: R \rightarrow R\) defined by \(f(x)=(x-2)(x-3)(x-5)\) |III) Bijection|
|D) \(f: \mathrm{N} \rightarrow \mathrm{N}\) defined by \(\mathbf{f}(\mathbf{n})=\mathbf{n}+\mathbf{1}\)|IV) Neither injection nor surjection |
| | V) Compositefunction|
The correct match is

1 A - II, B - II, C - III
2 A - IV, B - I, C - II
3 A - IV, B - III, C - II
4 A - IV, B - III, C - II
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116937 Let \(p(x)=a x^2+b x, q(x)=l x^2+\mathbf{m x}+\mathbf{n}\), with \(p\)

1 0
2 5
3 6
4 9
Sets, Relation and Function

116938 \(f(x)\) is real valued function such that \(2 f(x)+\) \(3 f(-x)=15-4 x\) for all \(x \in R\). Then \(f(2)=\)

1 -15
2 22
3 11
4 0
Sets, Relation and Function

116939 Consider the real valued function \(h\) : \(\{0,1,2 \ldots \ldots 100\} \rightarrow R\) such that \(h(0)=5\), h \((100)=20\) and satisfying \(h(p)=\frac{1}{2}\{h(p+1)+\) \(h(p-1)\}\) for every \(p=1,2 \ldots . .99\). Then the value of \(h\) (1) is

1 5.15
2 5.5
3 6
4 6.15
Sets, Relation and Function

116940 If \(f(x)=\frac{2 x-3}{(x-2)(x-3)}\) is a valued function then the value that \(f(x)\) does not take is

1 -10
2 2
3 1
4 -2
Sets, Relation and Function

116941 Match the functions of List-I with their nature in List-II and choose the correct option.
|List - I|List - II|
|
|A) \(\boldsymbol{f}: \mathrm{R} \rightarrow \mathrm{R}\) defined by \(f(x)=\cos (112 x-37)\) |I) Injection but not surjection|
|B) \(f: \mathrm{A} \rightarrow \mathrm{B}\) defined by \(\mathbf{f}(\mathbf{x})=\mathbf{x}\mathbf{x}\) when \(A=[-2,2] \& B=[-4,4]\)|II) Surjection but not injection
|C) \(f: R \rightarrow R\) defined by \(f(x)=(x-2)(x-3)(x-5)\) |III) Bijection|
|D) \(f: \mathrm{N} \rightarrow \mathrm{N}\) defined by \(\mathbf{f}(\mathbf{n})=\mathbf{n}+\mathbf{1}\)|IV) Neither injection nor surjection |
| | V) Compositefunction|
The correct match is

1 A - II, B - II, C - III
2 A - IV, B - I, C - II
3 A - IV, B - III, C - II
4 A - IV, B - III, C - II
Sets, Relation and Function

116937 Let \(p(x)=a x^2+b x, q(x)=l x^2+\mathbf{m x}+\mathbf{n}\), with \(p\)

1 0
2 5
3 6
4 9
Sets, Relation and Function

116938 \(f(x)\) is real valued function such that \(2 f(x)+\) \(3 f(-x)=15-4 x\) for all \(x \in R\). Then \(f(2)=\)

1 -15
2 22
3 11
4 0
Sets, Relation and Function

116939 Consider the real valued function \(h\) : \(\{0,1,2 \ldots \ldots 100\} \rightarrow R\) such that \(h(0)=5\), h \((100)=20\) and satisfying \(h(p)=\frac{1}{2}\{h(p+1)+\) \(h(p-1)\}\) for every \(p=1,2 \ldots . .99\). Then the value of \(h\) (1) is

1 5.15
2 5.5
3 6
4 6.15
Sets, Relation and Function

116940 If \(f(x)=\frac{2 x-3}{(x-2)(x-3)}\) is a valued function then the value that \(f(x)\) does not take is

1 -10
2 2
3 1
4 -2
Sets, Relation and Function

116941 Match the functions of List-I with their nature in List-II and choose the correct option.
|List - I|List - II|
|
|A) \(\boldsymbol{f}: \mathrm{R} \rightarrow \mathrm{R}\) defined by \(f(x)=\cos (112 x-37)\) |I) Injection but not surjection|
|B) \(f: \mathrm{A} \rightarrow \mathrm{B}\) defined by \(\mathbf{f}(\mathbf{x})=\mathbf{x}\mathbf{x}\) when \(A=[-2,2] \& B=[-4,4]\)|II) Surjection but not injection
|C) \(f: R \rightarrow R\) defined by \(f(x)=(x-2)(x-3)(x-5)\) |III) Bijection|
|D) \(f: \mathrm{N} \rightarrow \mathrm{N}\) defined by \(\mathbf{f}(\mathbf{n})=\mathbf{n}+\mathbf{1}\)|IV) Neither injection nor surjection |
| | V) Compositefunction|
The correct match is

1 A - II, B - II, C - III
2 A - IV, B - I, C - II
3 A - IV, B - III, C - II
4 A - IV, B - III, C - II
Sets, Relation and Function

116937 Let \(p(x)=a x^2+b x, q(x)=l x^2+\mathbf{m x}+\mathbf{n}\), with \(p\)

1 0
2 5
3 6
4 9
Sets, Relation and Function

116938 \(f(x)\) is real valued function such that \(2 f(x)+\) \(3 f(-x)=15-4 x\) for all \(x \in R\). Then \(f(2)=\)

1 -15
2 22
3 11
4 0
Sets, Relation and Function

116939 Consider the real valued function \(h\) : \(\{0,1,2 \ldots \ldots 100\} \rightarrow R\) such that \(h(0)=5\), h \((100)=20\) and satisfying \(h(p)=\frac{1}{2}\{h(p+1)+\) \(h(p-1)\}\) for every \(p=1,2 \ldots . .99\). Then the value of \(h\) (1) is

1 5.15
2 5.5
3 6
4 6.15
Sets, Relation and Function

116940 If \(f(x)=\frac{2 x-3}{(x-2)(x-3)}\) is a valued function then the value that \(f(x)\) does not take is

1 -10
2 2
3 1
4 -2
Sets, Relation and Function

116941 Match the functions of List-I with their nature in List-II and choose the correct option.
|List - I|List - II|
|
|A) \(\boldsymbol{f}: \mathrm{R} \rightarrow \mathrm{R}\) defined by \(f(x)=\cos (112 x-37)\) |I) Injection but not surjection|
|B) \(f: \mathrm{A} \rightarrow \mathrm{B}\) defined by \(\mathbf{f}(\mathbf{x})=\mathbf{x}\mathbf{x}\) when \(A=[-2,2] \& B=[-4,4]\)|II) Surjection but not injection
|C) \(f: R \rightarrow R\) defined by \(f(x)=(x-2)(x-3)(x-5)\) |III) Bijection|
|D) \(f: \mathrm{N} \rightarrow \mathrm{N}\) defined by \(\mathbf{f}(\mathbf{n})=\mathbf{n}+\mathbf{1}\)|IV) Neither injection nor surjection |
| | V) Compositefunction|
The correct match is

1 A - II, B - II, C - III
2 A - IV, B - I, C - II
3 A - IV, B - III, C - II
4 A - IV, B - III, C - II