116902 If 4x−3x−12=3x+12−22x−1 then the value of x is
D 4x−3x−1/2=3x+1/2−22x−14x−3x×3−1/2=3x×31/2−22x×2−122x+22x×2−1=3x×31/2+3x3−1/222x(1+12)=3x(3+13)22x(32)=3x(3+13)22x3x=43×2322x3x=8334x3x=432332(43)x=(43)3/2On comparing both side, we get-x=32
116904 If x=2+32−3, then x2(x−4)2 is equal to:
D Given, x=(2+3)(2−3)On simplifying, we gets -x=(2+3)(2+3)(2−3)(2+3)x=(2+3)24−3x=2+3Then, x−4=−2+3∴x(x−4)=(2+3)(−2+3)=3−4=−1So, x2(x−4)2=(−1)2=1
116905 If f(x)=log(x+x2+1), then f(x) is
B Given, f(x)=log(x+x2+1)We know that, for odd function-f(−x)=−f(x)⇒f(x)+f(−x)=0For even function-f(−x)=f(x)⇒f(x)+f(−x)=2f(x)We have,f(−x)=log(−x+(−x)2+1)f(−x)=log(−x+x2+1)f(x)+f(−x)=log(x+x2+1)+log(−x+x2+1)=log(x+x2+1)(−x+x2+1)=log((x2+1)2−x2)=log(x2−1−x2)=log(1)=0Hence it is odd function
116908 If f(x)=cos(logex), thenf(x)f(y)−12[f(yx)+f(xy)] has the value
D Given,f(x)=cos(logex),f(yx)=cos(logeyx)F(xy)=cos(logexy)∴f(x)f(y)−12[f(yx)+f(xy)]=cos(logex)cos(logey)−12[cos(logeyx)+cos(logexy)]=cos(logex)cos(logey)−12[cos(logey−logex)+cos(logex+logey)]=cos(logex)cos(logey)−12[2cos(logex)cos(logey)]=cos(logex)cos(logey)−cos(logey)cos(logex)=0