Properties of Functions and Graphs
Sets, Relation and Function

116895 Let \(A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}\) and
\(f, g: A \rightarrow B\) be functions defined by \(f(x)=x^2\)
\(-x\) and \(g(x)=2\left|x-\frac{1}{2}\right|-1\). Then

1 \(f=g\)
2 \(f=2 g\)
3 \(\mathrm{g}=2 \mathrm{f}\)
4 none of these
Sets, Relation and Function

116896 If \(1^4+2^4+3^4+\ldots \ldots+n^4=f(n)\left(1^2+2^2+\ldots \ldots+n^2\right)\),
\(\forall \mathbf{n} \in \mathbf{N}\) then \(\mathbf{f}(\mathbf{4})=\)

1 \(\frac{58}{5}\)
2 \(\frac{57}{5}\)
3 \(\frac{59}{5}\)
4 \(\frac{56}{5}\)
Sets, Relation and Function

116897 If \(f(x)=\frac{5^x}{5+5^x}\) then \(f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+\ldots .+f\left(\frac{39}{20}\right)\) is

1 20
2 \(\frac{29}{2}\)
3 \(\frac{19}{2}\)
4 \(\frac{39}{2}\)
Sets, Relation and Function

116898 If \(12^{4+2 x^2}=(24 \sqrt{3})^{3 x^2-2}\), then \(x=\)

1 \(\pm \sqrt{\frac{13}{12}}\)
2 \(\pm \sqrt{\frac{14}{5}}\)
3 \(\pm \sqrt{\frac{12}{13}}\)
4 \(\pm \sqrt{\frac{5}{14}}\)
Sets, Relation and Function

116901 Assuming \(|x|\) to be so small, that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\frac{\sqrt{1+x}+(1-x)^{3 / 2}}{(1+x)+\sqrt{1+x}}=\)

1 \(1+\frac{5 x}{4}\)
2 \(1-\frac{5 x}{4}\)
3 \(1+\frac{4 \mathrm{x}}{5}\)
4 \(1-\frac{4 \mathrm{x}}{5}\)
Sets, Relation and Function

116895 Let \(A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}\) and
\(f, g: A \rightarrow B\) be functions defined by \(f(x)=x^2\)
\(-x\) and \(g(x)=2\left|x-\frac{1}{2}\right|-1\). Then

1 \(f=g\)
2 \(f=2 g\)
3 \(\mathrm{g}=2 \mathrm{f}\)
4 none of these
Sets, Relation and Function

116896 If \(1^4+2^4+3^4+\ldots \ldots+n^4=f(n)\left(1^2+2^2+\ldots \ldots+n^2\right)\),
\(\forall \mathbf{n} \in \mathbf{N}\) then \(\mathbf{f}(\mathbf{4})=\)

1 \(\frac{58}{5}\)
2 \(\frac{57}{5}\)
3 \(\frac{59}{5}\)
4 \(\frac{56}{5}\)
Sets, Relation and Function

116897 If \(f(x)=\frac{5^x}{5+5^x}\) then \(f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+\ldots .+f\left(\frac{39}{20}\right)\) is

1 20
2 \(\frac{29}{2}\)
3 \(\frac{19}{2}\)
4 \(\frac{39}{2}\)
Sets, Relation and Function

116898 If \(12^{4+2 x^2}=(24 \sqrt{3})^{3 x^2-2}\), then \(x=\)

1 \(\pm \sqrt{\frac{13}{12}}\)
2 \(\pm \sqrt{\frac{14}{5}}\)
3 \(\pm \sqrt{\frac{12}{13}}\)
4 \(\pm \sqrt{\frac{5}{14}}\)
Sets, Relation and Function

116901 Assuming \(|x|\) to be so small, that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\frac{\sqrt{1+x}+(1-x)^{3 / 2}}{(1+x)+\sqrt{1+x}}=\)

1 \(1+\frac{5 x}{4}\)
2 \(1-\frac{5 x}{4}\)
3 \(1+\frac{4 \mathrm{x}}{5}\)
4 \(1-\frac{4 \mathrm{x}}{5}\)
Sets, Relation and Function

116895 Let \(A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}\) and
\(f, g: A \rightarrow B\) be functions defined by \(f(x)=x^2\)
\(-x\) and \(g(x)=2\left|x-\frac{1}{2}\right|-1\). Then

1 \(f=g\)
2 \(f=2 g\)
3 \(\mathrm{g}=2 \mathrm{f}\)
4 none of these
Sets, Relation and Function

116896 If \(1^4+2^4+3^4+\ldots \ldots+n^4=f(n)\left(1^2+2^2+\ldots \ldots+n^2\right)\),
\(\forall \mathbf{n} \in \mathbf{N}\) then \(\mathbf{f}(\mathbf{4})=\)

1 \(\frac{58}{5}\)
2 \(\frac{57}{5}\)
3 \(\frac{59}{5}\)
4 \(\frac{56}{5}\)
Sets, Relation and Function

116897 If \(f(x)=\frac{5^x}{5+5^x}\) then \(f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+\ldots .+f\left(\frac{39}{20}\right)\) is

1 20
2 \(\frac{29}{2}\)
3 \(\frac{19}{2}\)
4 \(\frac{39}{2}\)
Sets, Relation and Function

116898 If \(12^{4+2 x^2}=(24 \sqrt{3})^{3 x^2-2}\), then \(x=\)

1 \(\pm \sqrt{\frac{13}{12}}\)
2 \(\pm \sqrt{\frac{14}{5}}\)
3 \(\pm \sqrt{\frac{12}{13}}\)
4 \(\pm \sqrt{\frac{5}{14}}\)
Sets, Relation and Function

116901 Assuming \(|x|\) to be so small, that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\frac{\sqrt{1+x}+(1-x)^{3 / 2}}{(1+x)+\sqrt{1+x}}=\)

1 \(1+\frac{5 x}{4}\)
2 \(1-\frac{5 x}{4}\)
3 \(1+\frac{4 \mathrm{x}}{5}\)
4 \(1-\frac{4 \mathrm{x}}{5}\)
Sets, Relation and Function

116895 Let \(A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}\) and
\(f, g: A \rightarrow B\) be functions defined by \(f(x)=x^2\)
\(-x\) and \(g(x)=2\left|x-\frac{1}{2}\right|-1\). Then

1 \(f=g\)
2 \(f=2 g\)
3 \(\mathrm{g}=2 \mathrm{f}\)
4 none of these
Sets, Relation and Function

116896 If \(1^4+2^4+3^4+\ldots \ldots+n^4=f(n)\left(1^2+2^2+\ldots \ldots+n^2\right)\),
\(\forall \mathbf{n} \in \mathbf{N}\) then \(\mathbf{f}(\mathbf{4})=\)

1 \(\frac{58}{5}\)
2 \(\frac{57}{5}\)
3 \(\frac{59}{5}\)
4 \(\frac{56}{5}\)
Sets, Relation and Function

116897 If \(f(x)=\frac{5^x}{5+5^x}\) then \(f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+\ldots .+f\left(\frac{39}{20}\right)\) is

1 20
2 \(\frac{29}{2}\)
3 \(\frac{19}{2}\)
4 \(\frac{39}{2}\)
Sets, Relation and Function

116898 If \(12^{4+2 x^2}=(24 \sqrt{3})^{3 x^2-2}\), then \(x=\)

1 \(\pm \sqrt{\frac{13}{12}}\)
2 \(\pm \sqrt{\frac{14}{5}}\)
3 \(\pm \sqrt{\frac{12}{13}}\)
4 \(\pm \sqrt{\frac{5}{14}}\)
Sets, Relation and Function

116901 Assuming \(|x|\) to be so small, that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\frac{\sqrt{1+x}+(1-x)^{3 / 2}}{(1+x)+\sqrt{1+x}}=\)

1 \(1+\frac{5 x}{4}\)
2 \(1-\frac{5 x}{4}\)
3 \(1+\frac{4 \mathrm{x}}{5}\)
4 \(1-\frac{4 \mathrm{x}}{5}\)
Sets, Relation and Function

116895 Let \(A=\{-1,0,1,2\}, B=\{-4,-2,0,2\}\) and
\(f, g: A \rightarrow B\) be functions defined by \(f(x)=x^2\)
\(-x\) and \(g(x)=2\left|x-\frac{1}{2}\right|-1\). Then

1 \(f=g\)
2 \(f=2 g\)
3 \(\mathrm{g}=2 \mathrm{f}\)
4 none of these
Sets, Relation and Function

116896 If \(1^4+2^4+3^4+\ldots \ldots+n^4=f(n)\left(1^2+2^2+\ldots \ldots+n^2\right)\),
\(\forall \mathbf{n} \in \mathbf{N}\) then \(\mathbf{f}(\mathbf{4})=\)

1 \(\frac{58}{5}\)
2 \(\frac{57}{5}\)
3 \(\frac{59}{5}\)
4 \(\frac{56}{5}\)
Sets, Relation and Function

116897 If \(f(x)=\frac{5^x}{5+5^x}\) then \(f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+\ldots .+f\left(\frac{39}{20}\right)\) is

1 20
2 \(\frac{29}{2}\)
3 \(\frac{19}{2}\)
4 \(\frac{39}{2}\)
Sets, Relation and Function

116898 If \(12^{4+2 x^2}=(24 \sqrt{3})^{3 x^2-2}\), then \(x=\)

1 \(\pm \sqrt{\frac{13}{12}}\)
2 \(\pm \sqrt{\frac{14}{5}}\)
3 \(\pm \sqrt{\frac{12}{13}}\)
4 \(\pm \sqrt{\frac{5}{14}}\)
Sets, Relation and Function

116901 Assuming \(|x|\) to be so small, that \(x^2\) and higher powers of \(x\) can be neglected, then
\(\frac{\sqrt{1+x}+(1-x)^{3 / 2}}{(1+x)+\sqrt{1+x}}=\)

1 \(1+\frac{5 x}{4}\)
2 \(1-\frac{5 x}{4}\)
3 \(1+\frac{4 \mathrm{x}}{5}\)
4 \(1-\frac{4 \mathrm{x}}{5}\)