Properties of Functions and Graphs
Sets, Relation and Function

116907 If \(f(x)=2 x^2\), find \(\frac{f(3.8)-f(4)}{3.8-4}\)

1 156
2 0.156
3 1.56
4 15.6
Sets, Relation and Function

116975 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is

1 2
2 6
3 \(2 / 3\)
4 None of these
Sets, Relation and Function

117024 If \(p\) and \(q\) are positive real numbers such that \(p^2+q^2=1\), then the maximum value of \((p+q)\) is

1 2
2 \(\frac{1}{2}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
Sets, Relation and Function

116859 If \(p=\frac{1}{\log _3 \pi}+\frac{1}{\log _4 \pi}+1\), then

1 \(2.5\lt \mathrm{p}\lt 3\)
2 \(\mathrm{p}>3\)
3 \(1.5\lt \mathrm{p}\lt 2\)
4 \(2\lt \) p \(\lt 2.5\)
Sets, Relation and Function

116906 If \(f: R \rightarrow R\), such that \(f(x)=\frac{e^x+e^{-x}}{e^x-e^{-x}}\), then \(f\) is

1 an odd function
2 a neither even nor odd function
3 an even function
4 a periodic function
Sets, Relation and Function

116907 If \(f(x)=2 x^2\), find \(\frac{f(3.8)-f(4)}{3.8-4}\)

1 156
2 0.156
3 1.56
4 15.6
Sets, Relation and Function

116975 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is

1 2
2 6
3 \(2 / 3\)
4 None of these
Sets, Relation and Function

117024 If \(p\) and \(q\) are positive real numbers such that \(p^2+q^2=1\), then the maximum value of \((p+q)\) is

1 2
2 \(\frac{1}{2}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
Sets, Relation and Function

116859 If \(p=\frac{1}{\log _3 \pi}+\frac{1}{\log _4 \pi}+1\), then

1 \(2.5\lt \mathrm{p}\lt 3\)
2 \(\mathrm{p}>3\)
3 \(1.5\lt \mathrm{p}\lt 2\)
4 \(2\lt \) p \(\lt 2.5\)
Sets, Relation and Function

116906 If \(f: R \rightarrow R\), such that \(f(x)=\frac{e^x+e^{-x}}{e^x-e^{-x}}\), then \(f\) is

1 an odd function
2 a neither even nor odd function
3 an even function
4 a periodic function
Sets, Relation and Function

116907 If \(f(x)=2 x^2\), find \(\frac{f(3.8)-f(4)}{3.8-4}\)

1 156
2 0.156
3 1.56
4 15.6
Sets, Relation and Function

116975 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is

1 2
2 6
3 \(2 / 3\)
4 None of these
Sets, Relation and Function

117024 If \(p\) and \(q\) are positive real numbers such that \(p^2+q^2=1\), then the maximum value of \((p+q)\) is

1 2
2 \(\frac{1}{2}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
Sets, Relation and Function

116859 If \(p=\frac{1}{\log _3 \pi}+\frac{1}{\log _4 \pi}+1\), then

1 \(2.5\lt \mathrm{p}\lt 3\)
2 \(\mathrm{p}>3\)
3 \(1.5\lt \mathrm{p}\lt 2\)
4 \(2\lt \) p \(\lt 2.5\)
Sets, Relation and Function

116906 If \(f: R \rightarrow R\), such that \(f(x)=\frac{e^x+e^{-x}}{e^x-e^{-x}}\), then \(f\) is

1 an odd function
2 a neither even nor odd function
3 an even function
4 a periodic function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116907 If \(f(x)=2 x^2\), find \(\frac{f(3.8)-f(4)}{3.8-4}\)

1 156
2 0.156
3 1.56
4 15.6
Sets, Relation and Function

116975 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is

1 2
2 6
3 \(2 / 3\)
4 None of these
Sets, Relation and Function

117024 If \(p\) and \(q\) are positive real numbers such that \(p^2+q^2=1\), then the maximum value of \((p+q)\) is

1 2
2 \(\frac{1}{2}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
Sets, Relation and Function

116859 If \(p=\frac{1}{\log _3 \pi}+\frac{1}{\log _4 \pi}+1\), then

1 \(2.5\lt \mathrm{p}\lt 3\)
2 \(\mathrm{p}>3\)
3 \(1.5\lt \mathrm{p}\lt 2\)
4 \(2\lt \) p \(\lt 2.5\)
Sets, Relation and Function

116906 If \(f: R \rightarrow R\), such that \(f(x)=\frac{e^x+e^{-x}}{e^x-e^{-x}}\), then \(f\) is

1 an odd function
2 a neither even nor odd function
3 an even function
4 a periodic function
Sets, Relation and Function

116907 If \(f(x)=2 x^2\), find \(\frac{f(3.8)-f(4)}{3.8-4}\)

1 156
2 0.156
3 1.56
4 15.6
Sets, Relation and Function

116975 If \(y=3^{x-1}+3^{-x-1}\) (x real), then the least value of \(y\) is

1 2
2 6
3 \(2 / 3\)
4 None of these
Sets, Relation and Function

117024 If \(p\) and \(q\) are positive real numbers such that \(p^2+q^2=1\), then the maximum value of \((p+q)\) is

1 2
2 \(\frac{1}{2}\)
3 \(\frac{1}{\sqrt{2}}\)
4 \(\sqrt{2}\)
Sets, Relation and Function

116859 If \(p=\frac{1}{\log _3 \pi}+\frac{1}{\log _4 \pi}+1\), then

1 \(2.5\lt \mathrm{p}\lt 3\)
2 \(\mathrm{p}>3\)
3 \(1.5\lt \mathrm{p}\lt 2\)
4 \(2\lt \) p \(\lt 2.5\)
Sets, Relation and Function

116906 If \(f: R \rightarrow R\), such that \(f(x)=\frac{e^x+e^{-x}}{e^x-e^{-x}}\), then \(f\) is

1 an odd function
2 a neither even nor odd function
3 an even function
4 a periodic function