1 reflexive and transitive
2 reflexive and symmetric
3 symmetric and transitive
4 equivalence
Explanation:
A Given, A relation \(\mathrm{R}\) on \(\mathrm{A}=\{1,2,3,4\}\) as \(x\) Ry if \(x\) divides \(y\).
Then, check relation \(\mathrm{R}\) are -
(a) Reflexive :-
\(\mathrm{x}\) divides \(\mathrm{x}, \mathrm{x} \in \mathrm{A}\)
It is true because 1 divides 1
2 divides 2
3 divides 3
4 divides 4
Then, satisfies the condition -
\(x R x, x \in A\).
It is a reflexive relation
(b) Symmetric relation :-
Since, \(\mathrm{x}\) divides \(\mathrm{y} \nRightarrow \mathrm{y}\) divides \(\mathrm{x}, \mathrm{x}, \mathrm{y} \in \mathrm{A}\)
It is not true because -
1 divides \(2 \not 2\) not divides 1
2 divides \(4 \nRightarrow 4\) not divides 2
Then, does not satisfies the condition -
\(x R y \nRightarrow y R x, \quad x \in A, y \in A\).
It is not a symmetric relation -
(c) Transitive relation:-
Let \(\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{A}\)
Since, \(\mathrm{x}\) divides \(\mathrm{y}, \mathrm{y}\) divides \(\Rightarrow \mathrm{x}\) divides \(\mathrm{z}\)
It is true, because -
1 Divides 2,2 divides \(4 \Rightarrow 1\) divides 4
Then satisfies the condition -
\(\mathrm{xRy}, \mathrm{yRz} \Rightarrow \mathrm{xRz}\)
It is a transitive relation -
So, \(\mathrm{R}\) is reflexive and transitive relation but not symmetric relation.