116835
Let \(R_1\) and \(R_2\) be two relations defined as follows
\(\mathbf{R}_1=\left\{(\mathbf{a}, \mathbf{b}) \in \mathbf{R}^2: \mathbf{a}^2+\mathbf{b}^2 \in \mathbf{Q}\right\}\)
\(\mathbf{R}_2=\left\{(\mathbf{a}, \mathbf{b}) \in \mathbf{R}^2: \mathbf{a}^2+\mathbf{b}^2 \notin \mathbf{Q}\right\}\)
where \(Q\) is the set of all rational numbers. Then
116835
Let \(R_1\) and \(R_2\) be two relations defined as follows
\(\mathbf{R}_1=\left\{(\mathbf{a}, \mathbf{b}) \in \mathbf{R}^2: \mathbf{a}^2+\mathbf{b}^2 \in \mathbf{Q}\right\}\)
\(\mathbf{R}_2=\left\{(\mathbf{a}, \mathbf{b}) \in \mathbf{R}^2: \mathbf{a}^2+\mathbf{b}^2 \notin \mathbf{Q}\right\}\)
where \(Q\) is the set of all rational numbers. Then
116835
Let \(R_1\) and \(R_2\) be two relations defined as follows
\(\mathbf{R}_1=\left\{(\mathbf{a}, \mathbf{b}) \in \mathbf{R}^2: \mathbf{a}^2+\mathbf{b}^2 \in \mathbf{Q}\right\}\)
\(\mathbf{R}_2=\left\{(\mathbf{a}, \mathbf{b}) \in \mathbf{R}^2: \mathbf{a}^2+\mathbf{b}^2 \notin \mathbf{Q}\right\}\)
where \(Q\) is the set of all rational numbers. Then
116835
Let \(R_1\) and \(R_2\) be two relations defined as follows
\(\mathbf{R}_1=\left\{(\mathbf{a}, \mathbf{b}) \in \mathbf{R}^2: \mathbf{a}^2+\mathbf{b}^2 \in \mathbf{Q}\right\}\)
\(\mathbf{R}_2=\left\{(\mathbf{a}, \mathbf{b}) \in \mathbf{R}^2: \mathbf{a}^2+\mathbf{b}^2 \notin \mathbf{Q}\right\}\)
where \(Q\) is the set of all rational numbers. Then