116796 Let \(P(S)\) denote the power set of \(S=\{1,2\), 3....,10 . Define the relation \(R_1\) and \(R_2\) on \(P(S)\) as \(A R_1 B\) if \(\left(A \cap B^C\right) \cup\left(B \cap A^C\right)=\phi\) and \(A R_2 B\) if \(A \cup B^C=B \cup A^C, \forall A, B \in P(S)\). Then
116796 Let \(P(S)\) denote the power set of \(S=\{1,2\), 3....,10 . Define the relation \(R_1\) and \(R_2\) on \(P(S)\) as \(A R_1 B\) if \(\left(A \cap B^C\right) \cup\left(B \cap A^C\right)=\phi\) and \(A R_2 B\) if \(A \cup B^C=B \cup A^C, \forall A, B \in P(S)\). Then
116796 Let \(P(S)\) denote the power set of \(S=\{1,2\), 3....,10 . Define the relation \(R_1\) and \(R_2\) on \(P(S)\) as \(A R_1 B\) if \(\left(A \cap B^C\right) \cup\left(B \cap A^C\right)=\phi\) and \(A R_2 B\) if \(A \cup B^C=B \cup A^C, \forall A, B \in P(S)\). Then
116796 Let \(P(S)\) denote the power set of \(S=\{1,2\), 3....,10 . Define the relation \(R_1\) and \(R_2\) on \(P(S)\) as \(A R_1 B\) if \(\left(A \cap B^C\right) \cup\left(B \cap A^C\right)=\phi\) and \(A R_2 B\) if \(A \cup B^C=B \cup A^C, \forall A, B \in P(S)\). Then