Cartesian Product of Sets
Sets, Relation and Function

116781 If \(A=\{a, b, c\}, B=\{b, c, d\}\) and \(C=\{a, d, c\}\), then \((\mathbf{A}-\mathbf{B}) \times(\mathbf{B} \cap \mathbf{C})=\)

1 \(\{(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d})\}\)
2 \(\{(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})\}\)
3 \(\{(\mathrm{c}, \mathrm{a}),(\mathrm{d}, \mathrm{a})\}\)
4 \(\{(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{d})\}\)
Sets, Relation and Function

116777 If \(A\) and \(B\) be two sets such that \(A \times B\) consists of 6 elements. If three elements \(A \times B\) are \((1,4)\) \((2,6)\) and \((3,6)\), find \(B \times A\).

1 \(\{(1,4),(1,6),(2,4),(2,6),(3,4),(3,6)\}\)
2 \(\{(4,1),(4,2),(4,3),(6,1),(6,2),(6,3)\}\)
3 \(\{(4,4),(6,6)\}\)
4 \(\{(4,1),(6,2) \cdot(6,3)\}\)
Sets, Relation and Function

116778 If \(A\) and \(B\) have \(n\) elements in common, then the number of elements common to \(A \times B\) and \(\mathbf{B} \times \mathbf{A}\) is

1 0
2 \(\mathrm{n}\)
3 \(2 \mathrm{n}\)
4 \(\mathrm{n}^2\)
Sets, Relation and Function

116781 If \(A=\{a, b, c\}, B=\{b, c, d\}\) and \(C=\{a, d, c\}\), then \((\mathbf{A}-\mathbf{B}) \times(\mathbf{B} \cap \mathbf{C})=\)

1 \(\{(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d})\}\)
2 \(\{(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})\}\)
3 \(\{(\mathrm{c}, \mathrm{a}),(\mathrm{d}, \mathrm{a})\}\)
4 \(\{(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{d})\}\)
Sets, Relation and Function

116777 If \(A\) and \(B\) be two sets such that \(A \times B\) consists of 6 elements. If three elements \(A \times B\) are \((1,4)\) \((2,6)\) and \((3,6)\), find \(B \times A\).

1 \(\{(1,4),(1,6),(2,4),(2,6),(3,4),(3,6)\}\)
2 \(\{(4,1),(4,2),(4,3),(6,1),(6,2),(6,3)\}\)
3 \(\{(4,4),(6,6)\}\)
4 \(\{(4,1),(6,2) \cdot(6,3)\}\)
Sets, Relation and Function

116778 If \(A\) and \(B\) have \(n\) elements in common, then the number of elements common to \(A \times B\) and \(\mathbf{B} \times \mathbf{A}\) is

1 0
2 \(\mathrm{n}\)
3 \(2 \mathrm{n}\)
4 \(\mathrm{n}^2\)
Sets, Relation and Function

116781 If \(A=\{a, b, c\}, B=\{b, c, d\}\) and \(C=\{a, d, c\}\), then \((\mathbf{A}-\mathbf{B}) \times(\mathbf{B} \cap \mathbf{C})=\)

1 \(\{(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d})\}\)
2 \(\{(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})\}\)
3 \(\{(\mathrm{c}, \mathrm{a}),(\mathrm{d}, \mathrm{a})\}\)
4 \(\{(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{d})\}\)
Sets, Relation and Function

116777 If \(A\) and \(B\) be two sets such that \(A \times B\) consists of 6 elements. If three elements \(A \times B\) are \((1,4)\) \((2,6)\) and \((3,6)\), find \(B \times A\).

1 \(\{(1,4),(1,6),(2,4),(2,6),(3,4),(3,6)\}\)
2 \(\{(4,1),(4,2),(4,3),(6,1),(6,2),(6,3)\}\)
3 \(\{(4,4),(6,6)\}\)
4 \(\{(4,1),(6,2) \cdot(6,3)\}\)
Sets, Relation and Function

116778 If \(A\) and \(B\) have \(n\) elements in common, then the number of elements common to \(A \times B\) and \(\mathbf{B} \times \mathbf{A}\) is

1 0
2 \(\mathrm{n}\)
3 \(2 \mathrm{n}\)
4 \(\mathrm{n}^2\)