116760 Let \(A, B, C\) be finite sets, Suppose that \(n(A)=\) \(10, \mathbf{n}(\mathrm{B})=15, \mathrm{n}(\mathrm{C})=20, \mathrm{n}(\mathrm{A} \cap \mathrm{B})=8\) and \(n(B \cap C)=9\). Then the possible value of \(\mathbf{n}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})\) is
116760 Let \(A, B, C\) be finite sets, Suppose that \(n(A)=\) \(10, \mathbf{n}(\mathrm{B})=15, \mathrm{n}(\mathrm{C})=20, \mathrm{n}(\mathrm{A} \cap \mathrm{B})=8\) and \(n(B \cap C)=9\). Then the possible value of \(\mathbf{n}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})\) is
116760 Let \(A, B, C\) be finite sets, Suppose that \(n(A)=\) \(10, \mathbf{n}(\mathrm{B})=15, \mathrm{n}(\mathrm{C})=20, \mathrm{n}(\mathrm{A} \cap \mathrm{B})=8\) and \(n(B \cap C)=9\). Then the possible value of \(\mathbf{n}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})\) is
116760 Let \(A, B, C\) be finite sets, Suppose that \(n(A)=\) \(10, \mathbf{n}(\mathrm{B})=15, \mathrm{n}(\mathrm{C})=20, \mathrm{n}(\mathrm{A} \cap \mathrm{B})=8\) and \(n(B \cap C)=9\). Then the possible value of \(\mathbf{n}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})\) is