Sets and types of Sets
Sets, Relation and Function

116744 If the sets \(A\) and \(B\) are as follows: \(A=\{1,2,3,4)\), \(B=\{3,4,5,6\}\), then

1 \(\mathrm{A}-\mathrm{B}=\{1,2\}\)
2 \(\mathrm{B}-\mathrm{A}=\{5,6\}\)
3 \([(\mathrm{A}-\mathrm{B})-(\mathrm{B}-\mathrm{A})] \cap \mathrm{A}=\{1,2\}\)
4 \([(\mathrm{A}-\mathrm{B})-(\mathrm{B}-\mathrm{A})] \cup \mathrm{A}=\{3,4)\)
Sets, Relation and Function

116745 If \(A=\left\{4^n-3 n-1: n \in N\right\}\) and \(B=\{9(n-1)\) : \(n \in N\}\), then

1 \(\mathrm{B} \subset \mathrm{A}\)
2 \(\mathrm{A} \cup \mathrm{B}=\mathrm{N}\)
3 \(\mathrm{A} \subset \mathrm{B}\)
4 None of these
Sets, Relation and Function

116747 The number of subsets containing exactly 4 elements of the set \(\{2,4,6,8,10,12,14,16,18\) \} is equal to

1 126
2 63
3 189
4 58
5 94
Sets, Relation and Function

116748 If \(n(A \cup B)=97\), \(n(A \cap B)=23\) and \(n\) \((A-B)=39\), then \(n(B)\) is equal to

1 52
2 55
3 58
4 62
5 65
Sets, Relation and Function

116744 If the sets \(A\) and \(B\) are as follows: \(A=\{1,2,3,4)\), \(B=\{3,4,5,6\}\), then

1 \(\mathrm{A}-\mathrm{B}=\{1,2\}\)
2 \(\mathrm{B}-\mathrm{A}=\{5,6\}\)
3 \([(\mathrm{A}-\mathrm{B})-(\mathrm{B}-\mathrm{A})] \cap \mathrm{A}=\{1,2\}\)
4 \([(\mathrm{A}-\mathrm{B})-(\mathrm{B}-\mathrm{A})] \cup \mathrm{A}=\{3,4)\)
Sets, Relation and Function

116745 If \(A=\left\{4^n-3 n-1: n \in N\right\}\) and \(B=\{9(n-1)\) : \(n \in N\}\), then

1 \(\mathrm{B} \subset \mathrm{A}\)
2 \(\mathrm{A} \cup \mathrm{B}=\mathrm{N}\)
3 \(\mathrm{A} \subset \mathrm{B}\)
4 None of these
Sets, Relation and Function

116747 The number of subsets containing exactly 4 elements of the set \(\{2,4,6,8,10,12,14,16,18\) \} is equal to

1 126
2 63
3 189
4 58
5 94
Sets, Relation and Function

116748 If \(n(A \cup B)=97\), \(n(A \cap B)=23\) and \(n\) \((A-B)=39\), then \(n(B)\) is equal to

1 52
2 55
3 58
4 62
5 65
Sets, Relation and Function

116744 If the sets \(A\) and \(B\) are as follows: \(A=\{1,2,3,4)\), \(B=\{3,4,5,6\}\), then

1 \(\mathrm{A}-\mathrm{B}=\{1,2\}\)
2 \(\mathrm{B}-\mathrm{A}=\{5,6\}\)
3 \([(\mathrm{A}-\mathrm{B})-(\mathrm{B}-\mathrm{A})] \cap \mathrm{A}=\{1,2\}\)
4 \([(\mathrm{A}-\mathrm{B})-(\mathrm{B}-\mathrm{A})] \cup \mathrm{A}=\{3,4)\)
Sets, Relation and Function

116745 If \(A=\left\{4^n-3 n-1: n \in N\right\}\) and \(B=\{9(n-1)\) : \(n \in N\}\), then

1 \(\mathrm{B} \subset \mathrm{A}\)
2 \(\mathrm{A} \cup \mathrm{B}=\mathrm{N}\)
3 \(\mathrm{A} \subset \mathrm{B}\)
4 None of these
Sets, Relation and Function

116747 The number of subsets containing exactly 4 elements of the set \(\{2,4,6,8,10,12,14,16,18\) \} is equal to

1 126
2 63
3 189
4 58
5 94
Sets, Relation and Function

116748 If \(n(A \cup B)=97\), \(n(A \cap B)=23\) and \(n\) \((A-B)=39\), then \(n(B)\) is equal to

1 52
2 55
3 58
4 62
5 65
Sets, Relation and Function

116744 If the sets \(A\) and \(B\) are as follows: \(A=\{1,2,3,4)\), \(B=\{3,4,5,6\}\), then

1 \(\mathrm{A}-\mathrm{B}=\{1,2\}\)
2 \(\mathrm{B}-\mathrm{A}=\{5,6\}\)
3 \([(\mathrm{A}-\mathrm{B})-(\mathrm{B}-\mathrm{A})] \cap \mathrm{A}=\{1,2\}\)
4 \([(\mathrm{A}-\mathrm{B})-(\mathrm{B}-\mathrm{A})] \cup \mathrm{A}=\{3,4)\)
Sets, Relation and Function

116745 If \(A=\left\{4^n-3 n-1: n \in N\right\}\) and \(B=\{9(n-1)\) : \(n \in N\}\), then

1 \(\mathrm{B} \subset \mathrm{A}\)
2 \(\mathrm{A} \cup \mathrm{B}=\mathrm{N}\)
3 \(\mathrm{A} \subset \mathrm{B}\)
4 None of these
Sets, Relation and Function

116747 The number of subsets containing exactly 4 elements of the set \(\{2,4,6,8,10,12,14,16,18\) \} is equal to

1 126
2 63
3 189
4 58
5 94
Sets, Relation and Function

116748 If \(n(A \cup B)=97\), \(n(A \cap B)=23\) and \(n\) \((A-B)=39\), then \(n(B)\) is equal to

1 52
2 55
3 58
4 62
5 65