Sets and types of Sets
Sets, Relation and Function

116714 Let \(A=\{x: x \in R,|x|\lt 1\}\);
\(\mathbf{B}=\{\mathbf{x}: \mathbf{x} \in \mathbf{R},|\mathbf{x}-\mathbf{1}| \geq \mathbf{1}\} \text { and } \mathbf{A} \cup \mathbf{B}=\mathbf{R}-\mathbf{D} \text {, }\)
then the set \(D\) is

1 \(\{x: 1\lt x \leq 2\}\)
2 \(\{\mathrm{x}: 1 \leq \mathrm{x}\lt 2\}\)
3 \(\{x: 1 \leq x \leq 2\}\)
4 None of these
Sets, Relation and Function

116715 If \(A=\{1,2,3,4,5\}\) then the number of proper subsets of \(A\) is

1 31
2 38
3 48
4 54
Sets, Relation and Function

116716 Two finite sets have \(m\) and \(n\) elements. The number of subsets of the first set is \(\mathbf{1 1 2}\) more than that of the second set. The values of \(m\) and n respectively are,

1 4,7
2 7,4
3 4,4
4 7,7
Sets, Relation and Function

116718 If \(A=\left\{(x, y): x^2+y^2 \leq 1, x, y \in R\right\}\) and \(B=\left\{(x, y): x^2+y^2 \leq 4, x, y \in R\right\}\) then

1 \(\mathrm{A}-\mathrm{B}=\mathrm{A}\)
2 \(\mathrm{B}-\mathrm{A}=\mathrm{B}\)
3 \(\mathrm{A}-\mathrm{B}=\phi\)
4 \(\mathrm{B}-\mathrm{A}=\phi\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116714 Let \(A=\{x: x \in R,|x|\lt 1\}\);
\(\mathbf{B}=\{\mathbf{x}: \mathbf{x} \in \mathbf{R},|\mathbf{x}-\mathbf{1}| \geq \mathbf{1}\} \text { and } \mathbf{A} \cup \mathbf{B}=\mathbf{R}-\mathbf{D} \text {, }\)
then the set \(D\) is

1 \(\{x: 1\lt x \leq 2\}\)
2 \(\{\mathrm{x}: 1 \leq \mathrm{x}\lt 2\}\)
3 \(\{x: 1 \leq x \leq 2\}\)
4 None of these
Sets, Relation and Function

116715 If \(A=\{1,2,3,4,5\}\) then the number of proper subsets of \(A\) is

1 31
2 38
3 48
4 54
Sets, Relation and Function

116716 Two finite sets have \(m\) and \(n\) elements. The number of subsets of the first set is \(\mathbf{1 1 2}\) more than that of the second set. The values of \(m\) and n respectively are,

1 4,7
2 7,4
3 4,4
4 7,7
Sets, Relation and Function

116718 If \(A=\left\{(x, y): x^2+y^2 \leq 1, x, y \in R\right\}\) and \(B=\left\{(x, y): x^2+y^2 \leq 4, x, y \in R\right\}\) then

1 \(\mathrm{A}-\mathrm{B}=\mathrm{A}\)
2 \(\mathrm{B}-\mathrm{A}=\mathrm{B}\)
3 \(\mathrm{A}-\mathrm{B}=\phi\)
4 \(\mathrm{B}-\mathrm{A}=\phi\)
Sets, Relation and Function

116714 Let \(A=\{x: x \in R,|x|\lt 1\}\);
\(\mathbf{B}=\{\mathbf{x}: \mathbf{x} \in \mathbf{R},|\mathbf{x}-\mathbf{1}| \geq \mathbf{1}\} \text { and } \mathbf{A} \cup \mathbf{B}=\mathbf{R}-\mathbf{D} \text {, }\)
then the set \(D\) is

1 \(\{x: 1\lt x \leq 2\}\)
2 \(\{\mathrm{x}: 1 \leq \mathrm{x}\lt 2\}\)
3 \(\{x: 1 \leq x \leq 2\}\)
4 None of these
Sets, Relation and Function

116715 If \(A=\{1,2,3,4,5\}\) then the number of proper subsets of \(A\) is

1 31
2 38
3 48
4 54
Sets, Relation and Function

116716 Two finite sets have \(m\) and \(n\) elements. The number of subsets of the first set is \(\mathbf{1 1 2}\) more than that of the second set. The values of \(m\) and n respectively are,

1 4,7
2 7,4
3 4,4
4 7,7
Sets, Relation and Function

116718 If \(A=\left\{(x, y): x^2+y^2 \leq 1, x, y \in R\right\}\) and \(B=\left\{(x, y): x^2+y^2 \leq 4, x, y \in R\right\}\) then

1 \(\mathrm{A}-\mathrm{B}=\mathrm{A}\)
2 \(\mathrm{B}-\mathrm{A}=\mathrm{B}\)
3 \(\mathrm{A}-\mathrm{B}=\phi\)
4 \(\mathrm{B}-\mathrm{A}=\phi\)
Sets, Relation and Function

116714 Let \(A=\{x: x \in R,|x|\lt 1\}\);
\(\mathbf{B}=\{\mathbf{x}: \mathbf{x} \in \mathbf{R},|\mathbf{x}-\mathbf{1}| \geq \mathbf{1}\} \text { and } \mathbf{A} \cup \mathbf{B}=\mathbf{R}-\mathbf{D} \text {, }\)
then the set \(D\) is

1 \(\{x: 1\lt x \leq 2\}\)
2 \(\{\mathrm{x}: 1 \leq \mathrm{x}\lt 2\}\)
3 \(\{x: 1 \leq x \leq 2\}\)
4 None of these
Sets, Relation and Function

116715 If \(A=\{1,2,3,4,5\}\) then the number of proper subsets of \(A\) is

1 31
2 38
3 48
4 54
Sets, Relation and Function

116716 Two finite sets have \(m\) and \(n\) elements. The number of subsets of the first set is \(\mathbf{1 1 2}\) more than that of the second set. The values of \(m\) and n respectively are,

1 4,7
2 7,4
3 4,4
4 7,7
Sets, Relation and Function

116718 If \(A=\left\{(x, y): x^2+y^2 \leq 1, x, y \in R\right\}\) and \(B=\left\{(x, y): x^2+y^2 \leq 4, x, y \in R\right\}\) then

1 \(\mathrm{A}-\mathrm{B}=\mathrm{A}\)
2 \(\mathrm{B}-\mathrm{A}=\mathrm{B}\)
3 \(\mathrm{A}-\mathrm{B}=\phi\)
4 \(\mathrm{B}-\mathrm{A}=\phi\)