Sum of Special Series: Σn, Σn², and Σn³
Sequence and Series

118893 If \(\sum_{k=1}^n k(k+1)(k-1)=\mathbf{p n}^4+\mathbf{q} \mathbf{n}^3+\mathbf{t n}^2+\mathbf{s n}\), where \(p, q, t\) and \(s\) are constants, then the value of \(s\) is equal to

1 \(-\frac{1}{4}\)
2 \(-\frac{1}{2}\)
3 \(\frac{1}{2}\)
4 \(\frac{1}{4}\)
Sequence and Series

118894 Let \(S_1, S_2, \ldots S_n\) be squares such that for each \(n\) \(\geq 1\), the length of a side of \(S_n\) equals the length of the diagonal of \(S_{n+1}\). If the length of a side of \(S_1\) is \(10 \mathrm{~cm}\), then the least value of \(n\) for which the area of \(S_n\) less than \(1 \mathrm{sq} \mathbf{~ c m}\)

1 7
2 8
3 9
4 10
Sequence and Series

118895 The value of \(4+2(1+2) \log 2+\) \(\frac{2\left(1+2^2\right)}{2 !}(\log 2)^2+\frac{2\left(1+2^3\right)}{3 !}(\log 2)^3+\ldots .\). is

1 10
2 12
3 \(\log \left(3^2 \cdot 4^2\right)\)
4 \(\log \left(2^2 \cdot 3^2\right)\)
Sequence and Series

118896 The value of \(\log \left(10+10 x+10 x^2+\ldots \ldots.\right)\) is

1 \(1+x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\ldots \ldots\)
2 \(1-x+\frac{x^2}{2 !}-\frac{x^3}{3 !}+\ldots \ldots\)
3 \(1-x-\frac{x^2}{2}-\frac{x^3}{3}+\ldots \ldots\)
4 \(1+x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots \ldots\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sequence and Series

118893 If \(\sum_{k=1}^n k(k+1)(k-1)=\mathbf{p n}^4+\mathbf{q} \mathbf{n}^3+\mathbf{t n}^2+\mathbf{s n}\), where \(p, q, t\) and \(s\) are constants, then the value of \(s\) is equal to

1 \(-\frac{1}{4}\)
2 \(-\frac{1}{2}\)
3 \(\frac{1}{2}\)
4 \(\frac{1}{4}\)
Sequence and Series

118894 Let \(S_1, S_2, \ldots S_n\) be squares such that for each \(n\) \(\geq 1\), the length of a side of \(S_n\) equals the length of the diagonal of \(S_{n+1}\). If the length of a side of \(S_1\) is \(10 \mathrm{~cm}\), then the least value of \(n\) for which the area of \(S_n\) less than \(1 \mathrm{sq} \mathbf{~ c m}\)

1 7
2 8
3 9
4 10
Sequence and Series

118895 The value of \(4+2(1+2) \log 2+\) \(\frac{2\left(1+2^2\right)}{2 !}(\log 2)^2+\frac{2\left(1+2^3\right)}{3 !}(\log 2)^3+\ldots .\). is

1 10
2 12
3 \(\log \left(3^2 \cdot 4^2\right)\)
4 \(\log \left(2^2 \cdot 3^2\right)\)
Sequence and Series

118896 The value of \(\log \left(10+10 x+10 x^2+\ldots \ldots.\right)\) is

1 \(1+x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\ldots \ldots\)
2 \(1-x+\frac{x^2}{2 !}-\frac{x^3}{3 !}+\ldots \ldots\)
3 \(1-x-\frac{x^2}{2}-\frac{x^3}{3}+\ldots \ldots\)
4 \(1+x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots \ldots\)
Sequence and Series

118893 If \(\sum_{k=1}^n k(k+1)(k-1)=\mathbf{p n}^4+\mathbf{q} \mathbf{n}^3+\mathbf{t n}^2+\mathbf{s n}\), where \(p, q, t\) and \(s\) are constants, then the value of \(s\) is equal to

1 \(-\frac{1}{4}\)
2 \(-\frac{1}{2}\)
3 \(\frac{1}{2}\)
4 \(\frac{1}{4}\)
Sequence and Series

118894 Let \(S_1, S_2, \ldots S_n\) be squares such that for each \(n\) \(\geq 1\), the length of a side of \(S_n\) equals the length of the diagonal of \(S_{n+1}\). If the length of a side of \(S_1\) is \(10 \mathrm{~cm}\), then the least value of \(n\) for which the area of \(S_n\) less than \(1 \mathrm{sq} \mathbf{~ c m}\)

1 7
2 8
3 9
4 10
Sequence and Series

118895 The value of \(4+2(1+2) \log 2+\) \(\frac{2\left(1+2^2\right)}{2 !}(\log 2)^2+\frac{2\left(1+2^3\right)}{3 !}(\log 2)^3+\ldots .\). is

1 10
2 12
3 \(\log \left(3^2 \cdot 4^2\right)\)
4 \(\log \left(2^2 \cdot 3^2\right)\)
Sequence and Series

118896 The value of \(\log \left(10+10 x+10 x^2+\ldots \ldots.\right)\) is

1 \(1+x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\ldots \ldots\)
2 \(1-x+\frac{x^2}{2 !}-\frac{x^3}{3 !}+\ldots \ldots\)
3 \(1-x-\frac{x^2}{2}-\frac{x^3}{3}+\ldots \ldots\)
4 \(1+x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots \ldots\)
Sequence and Series

118893 If \(\sum_{k=1}^n k(k+1)(k-1)=\mathbf{p n}^4+\mathbf{q} \mathbf{n}^3+\mathbf{t n}^2+\mathbf{s n}\), where \(p, q, t\) and \(s\) are constants, then the value of \(s\) is equal to

1 \(-\frac{1}{4}\)
2 \(-\frac{1}{2}\)
3 \(\frac{1}{2}\)
4 \(\frac{1}{4}\)
Sequence and Series

118894 Let \(S_1, S_2, \ldots S_n\) be squares such that for each \(n\) \(\geq 1\), the length of a side of \(S_n\) equals the length of the diagonal of \(S_{n+1}\). If the length of a side of \(S_1\) is \(10 \mathrm{~cm}\), then the least value of \(n\) for which the area of \(S_n\) less than \(1 \mathrm{sq} \mathbf{~ c m}\)

1 7
2 8
3 9
4 10
Sequence and Series

118895 The value of \(4+2(1+2) \log 2+\) \(\frac{2\left(1+2^2\right)}{2 !}(\log 2)^2+\frac{2\left(1+2^3\right)}{3 !}(\log 2)^3+\ldots .\). is

1 10
2 12
3 \(\log \left(3^2 \cdot 4^2\right)\)
4 \(\log \left(2^2 \cdot 3^2\right)\)
Sequence and Series

118896 The value of \(\log \left(10+10 x+10 x^2+\ldots \ldots.\right)\) is

1 \(1+x+\frac{x^2}{2 !}+\frac{x^3}{3 !}+\ldots \ldots\)
2 \(1-x+\frac{x^2}{2 !}-\frac{x^3}{3 !}+\ldots \ldots\)
3 \(1-x-\frac{x^2}{2}-\frac{x^3}{3}+\ldots \ldots\)
4 \(1+x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots \ldots\)