Explanation:
C Given,
\(11^{\text {th }}\) terms of GP are,
Since, \({a r^5}^5, \mathrm{ar}^4, \mathrm{ar}^3, \mathrm{ar}^2, \mathrm{ar}, \mathrm{a}, \frac{\mathrm{a}}{\mathrm{r}}, \frac{\mathrm{a}}{\mathrm{r}^2}, \frac{\mathrm{a}}{\mathrm{r}^3}, \frac{\mathrm{a}}{\mathrm{r}^4}, \frac{\mathrm{a}}{\mathrm{r}^5}\)
\(6^{\text {th }}\) term of GP \(=2\)
\(\mathrm{a}=2\)
\(\therefore \quad\) Product of first \(11^{\text {th }}\) terms,
\(=\mathrm{ar}^2 \times \mathrm{ar}^4 \times \mathrm{ar}^3 \times \mathrm{ar}^2 \times \mathrm{ar} \times \frac{\mathrm{a}}{\mathrm{r}} \times \frac{\mathrm{a}}{\mathrm{r}^2} \times \frac{\mathrm{a}}{\mathrm{r}^3} \times \frac{\mathrm{a}}{\mathrm{r}^4} \times \frac{\mathrm{a}}{\mathrm{r}^5}\)
\(=a^{11}=2^{11}=2048\)