Arithmetic Progression
Sequence and Series

118485 In an arithmetic progression if the \(\mathrm{k}^{\text {th }}\) term is \(5 \mathrm{k}+1\), then the sum of first 100 terms is

1 \(50(507)\)
2 \(51(506)\)
3 \(50(506)\)
4 \(51(507)\)
5 \(52(506)\)
Sequence and Series

118486 If \(a+1,2 a+1,4 a-1\) are in arithmetic progression, then the value of \(a\) is

1 1
2 2
3 3
4 4
5 5
Sequence and Series

118487 Three numbers are in arithmetic progression. Their sum is 21 and the product of the first number and the third number is 45 . Then the product of these three number is

1 315
2 90
3 180
4 270
5 450
Sequence and Series

118488 The sixth term in the sequence is \(3,1, \frac{1}{3}, \ldots\). is

1 \(1 / 27\)
2 \(1 / 9\)
3 \(1 / 81\)
4 \(1 / 17\)
5 \(1 / 7\)
Sequence and Series

118485 In an arithmetic progression if the \(\mathrm{k}^{\text {th }}\) term is \(5 \mathrm{k}+1\), then the sum of first 100 terms is

1 \(50(507)\)
2 \(51(506)\)
3 \(50(506)\)
4 \(51(507)\)
5 \(52(506)\)
Sequence and Series

118486 If \(a+1,2 a+1,4 a-1\) are in arithmetic progression, then the value of \(a\) is

1 1
2 2
3 3
4 4
5 5
Sequence and Series

118487 Three numbers are in arithmetic progression. Their sum is 21 and the product of the first number and the third number is 45 . Then the product of these three number is

1 315
2 90
3 180
4 270
5 450
Sequence and Series

118488 The sixth term in the sequence is \(3,1, \frac{1}{3}, \ldots\). is

1 \(1 / 27\)
2 \(1 / 9\)
3 \(1 / 81\)
4 \(1 / 17\)
5 \(1 / 7\)
Sequence and Series

118485 In an arithmetic progression if the \(\mathrm{k}^{\text {th }}\) term is \(5 \mathrm{k}+1\), then the sum of first 100 terms is

1 \(50(507)\)
2 \(51(506)\)
3 \(50(506)\)
4 \(51(507)\)
5 \(52(506)\)
Sequence and Series

118486 If \(a+1,2 a+1,4 a-1\) are in arithmetic progression, then the value of \(a\) is

1 1
2 2
3 3
4 4
5 5
Sequence and Series

118487 Three numbers are in arithmetic progression. Their sum is 21 and the product of the first number and the third number is 45 . Then the product of these three number is

1 315
2 90
3 180
4 270
5 450
Sequence and Series

118488 The sixth term in the sequence is \(3,1, \frac{1}{3}, \ldots\). is

1 \(1 / 27\)
2 \(1 / 9\)
3 \(1 / 81\)
4 \(1 / 17\)
5 \(1 / 7\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sequence and Series

118485 In an arithmetic progression if the \(\mathrm{k}^{\text {th }}\) term is \(5 \mathrm{k}+1\), then the sum of first 100 terms is

1 \(50(507)\)
2 \(51(506)\)
3 \(50(506)\)
4 \(51(507)\)
5 \(52(506)\)
Sequence and Series

118486 If \(a+1,2 a+1,4 a-1\) are in arithmetic progression, then the value of \(a\) is

1 1
2 2
3 3
4 4
5 5
Sequence and Series

118487 Three numbers are in arithmetic progression. Their sum is 21 and the product of the first number and the third number is 45 . Then the product of these three number is

1 315
2 90
3 180
4 270
5 450
Sequence and Series

118488 The sixth term in the sequence is \(3,1, \frac{1}{3}, \ldots\). is

1 \(1 / 27\)
2 \(1 / 9\)
3 \(1 / 81\)
4 \(1 / 17\)
5 \(1 / 7\)