Simple Applications
Permutation and Combination

119248 If \(\frac{{ }^n P_{r-1}}{a}=\frac{{ }^n P_r}{b}=\frac{{ }^n P_{r+1}}{c}\), then

1 \(b^2=a(b+c)\)
2 \(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=1\)
3 \(\mathrm{a}^2=\mathrm{c}(\mathrm{a}+\mathrm{b})\)
4 \(\mathrm{abc}=1\)
Permutation and Combination

119249 If \(\frac{n !}{5 !(n-1) !}\) and \(\frac{n !}{7 !(n-3) !}\) are in the ratio 21 : 1 , then find the value of \(n\),

1 1
2 2
3 3
4 4
Permutation and Combination

119250 The number of integral solutions of \(x+y+z=\) 0, with \(x \geq-5, y \geq-5, z \geq-5\), is

1 135
2 136
3 455
4 105
Permutation and Combination

119251 The number of triangles whose vertices are at the vertices of an octagon but none of whose sides happen to come from the sides of the octagon is

1 24
2 52
3 48
4 16
Permutation and Combination

119248 If \(\frac{{ }^n P_{r-1}}{a}=\frac{{ }^n P_r}{b}=\frac{{ }^n P_{r+1}}{c}\), then

1 \(b^2=a(b+c)\)
2 \(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=1\)
3 \(\mathrm{a}^2=\mathrm{c}(\mathrm{a}+\mathrm{b})\)
4 \(\mathrm{abc}=1\)
Permutation and Combination

119249 If \(\frac{n !}{5 !(n-1) !}\) and \(\frac{n !}{7 !(n-3) !}\) are in the ratio 21 : 1 , then find the value of \(n\),

1 1
2 2
3 3
4 4
Permutation and Combination

119250 The number of integral solutions of \(x+y+z=\) 0, with \(x \geq-5, y \geq-5, z \geq-5\), is

1 135
2 136
3 455
4 105
Permutation and Combination

119251 The number of triangles whose vertices are at the vertices of an octagon but none of whose sides happen to come from the sides of the octagon is

1 24
2 52
3 48
4 16
Permutation and Combination

119248 If \(\frac{{ }^n P_{r-1}}{a}=\frac{{ }^n P_r}{b}=\frac{{ }^n P_{r+1}}{c}\), then

1 \(b^2=a(b+c)\)
2 \(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=1\)
3 \(\mathrm{a}^2=\mathrm{c}(\mathrm{a}+\mathrm{b})\)
4 \(\mathrm{abc}=1\)
Permutation and Combination

119249 If \(\frac{n !}{5 !(n-1) !}\) and \(\frac{n !}{7 !(n-3) !}\) are in the ratio 21 : 1 , then find the value of \(n\),

1 1
2 2
3 3
4 4
Permutation and Combination

119250 The number of integral solutions of \(x+y+z=\) 0, with \(x \geq-5, y \geq-5, z \geq-5\), is

1 135
2 136
3 455
4 105
Permutation and Combination

119251 The number of triangles whose vertices are at the vertices of an octagon but none of whose sides happen to come from the sides of the octagon is

1 24
2 52
3 48
4 16
Permutation and Combination

119248 If \(\frac{{ }^n P_{r-1}}{a}=\frac{{ }^n P_r}{b}=\frac{{ }^n P_{r+1}}{c}\), then

1 \(b^2=a(b+c)\)
2 \(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}=1\)
3 \(\mathrm{a}^2=\mathrm{c}(\mathrm{a}+\mathrm{b})\)
4 \(\mathrm{abc}=1\)
Permutation and Combination

119249 If \(\frac{n !}{5 !(n-1) !}\) and \(\frac{n !}{7 !(n-3) !}\) are in the ratio 21 : 1 , then find the value of \(n\),

1 1
2 2
3 3
4 4
Permutation and Combination

119250 The number of integral solutions of \(x+y+z=\) 0, with \(x \geq-5, y \geq-5, z \geq-5\), is

1 135
2 136
3 455
4 105
Permutation and Combination

119251 The number of triangles whose vertices are at the vertices of an octagon but none of whose sides happen to come from the sides of the octagon is

1 24
2 52
3 48
4 16